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Experimental Study on ISAC Performance
with Different Sensing Sequences
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Abstract—Integrated sensing and communication (ISAC) has
been recognized as one of the key techniques for 6G, aiming
at realizing smart sensing applications using wireless signals.
However, existing investigations are limited to the algorithm
design for smart sensing applications, and the parameters af-
fecting sensing performance have not been thoroughly explored.
To fill this gap, we study the impact of sensing sequences and
communication parameters on the performance with real-world
evaluations in this paper. Specifically, we develop a sensing
platform based on USRP X310 and propose a novel packet
detection algorithm as well as a time synchronization algorithm.
Two typical applications, i.e., human pose recognition and dy-
namic gesture recognition, have been conducted under different
sequences and communication parameters. The extensive results
indicate that the sensing performance is identical across various
sequences, and the relationship between the sensing performance
and communication parameters is fully investigated.

Index Terms—Wireless sensing, smart sensing application,
sensing sequence, sensing performance, ISAC

I. INTRODUCTION

THE vision of 6G is to achieve ubiquitous intelligence [1],
and integrated sensing and communication (ISAC) plays

a crucial role as it endows networks with the ability to sense
the real physical world. In contrast to conventional sensing
relying on additional sensors, ISAC aims to reuse commu-
nication wireless signals, e.g., Wi-Fi and cellular signals, to
sense the surrounding environment without extra cost [2]–[4].

The sensing applications can be divided into two categories:
traditional sensing applications (e.g., model-based positioning
and tracking) and smart sensing applications (e.g., learning-
based activity recognition and fall detection) [5]. The former
has been fully studied with the help of realistic simulation
systems [6]. However, only few works focus on the latter
since smart sensing applications require sensing data related
to humans and conventional simulation systems are with
limited real-world applicability. For example, the authors in [2]
utilized Wi-Fi signals to realize the gesture recognition task
and proposed a domain-independent feature body-coordinate
velocity profile for improving the sensing performance, i.e.,
recognition accuracy. The authors in [3] employed LTE sig-
nals to achieve indoor respiration monitoring and designed
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a delicate signal processing scheme to mitigate interference
caused by reflections from other moving objects. Existing
work [7] utilized ultra-wideband signals to recognize the daily
basic activity and proposed a CNN-LSTM model to achieve
high classification accuracy. In previous studies, most of the
attention has been paid to improving the sensing performance
through signal processing, feature extraction, and deep learn-
ing network structure design. Nevertheless, existing works
about sequence design only focused on traditional sensing
applications. For example, the authors in [8] and [9] paid
special attention to improving the traditional sensing perfor-
mance, i.e., the peak to sidelobe ratio, detection rate, and false
alarm rate, of different sensing sequences, e.g., m-sequence,
gold sequence, and Zadoff-Chu (ZC) sequence. Meanwhile,
in ISAC systems, sensing applications are realized with com-
munication settings. Thus, communication parameters, such as
bandwidth and subcarrier spacing, also impact the performance
of sensing applications. For example, authors in [10] studied
the impact of sampling rate and packet number on the accuracy
of identifying whether a person is static or moving. However,
comprehensive research on the influence of sequence and
communication parameters on sensing performance remains
insufficient.

Motivated by this, we aim to develop a real-world sensing
platform and explore the impact of sensing sequences and
communication parameters on the sensing performance. The
main contributions of this work are summarized as follows.
• We are among the first ones to explore the influence

of sensing sequences and communication parameters on the
performance of sensing applications. Specifically, we consider
three classical sequences: the cell-specific reference signals
(CRS) sequence in LTE systems, the long training field (LTF)
sequence in Wi-Fi systems, and the traditional sensing signal
(TSS) used in radar systems. The investigated parameters
include bandwidth, subcarrier spacing, number of receiving
antennas, and sampling rate.
• We develop a sensing platform, composed of a sensing

transmitter and a sensing receiver. In the receiver, we design a
packet detection algorithm and a fine timing synchronization
algorithm based on the correlation of channel state information
(CSI) between two adjacent sensing sequences.
• We conduct a real-world test with two typical applications,

i.e., human pose recognition and dynamic gesture recognition,
using USRP X310. Extensive evaluations demonstrate that the
sensing performance of different sensing sequences is similar
and the sensing performance increases with the bandwidth and
sampling rate but decreases with the subcarrier spacing.

The rest of this letter is organized as follows. Section II
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Fig. 1. Schematic diagram of the sensing platform.

introduces the sensing platform including a transmitter module
and a receiver module. Section III presents the real-world test
results and the letter is concluded in Section IV.

II. SENSING PLATFORM DESIGN

The framework of the sensing platform contains two parts,
i.e., a transmitter module and a receiver module, as illustrated
in Fig. 1.1 The former is utilized to transmit specific sensing
signals and the latter is utilized for receiving the echo signals
and obtaining the sensing results with the sensing algorithms.

A. Sensing Transmitter

In the transmitter module, we consider an orthogonal fre-
quency division multiplexing (OFDM) signal since it can
be easily used in existing communication systems. In an
OFDM system, the transmit sequence in the frequency domain,
denoted by s ∈ CNr×1, undergoes the operations of zero-
padding, inverse fast Fourier transform (IFFT), and CP inser-
tion. Specifically, to mitigate intercarrier interference (ICI), a
frequency-domain guard band by zero-padding is introduced,
and the transmit sequence s are zero-padded as BHs, where
B = [0

Nr×
Nf−Nr

2

INr 0
Nr×

Nf−Nr

2

] and (·)H represents the
Hermitian transpose of the matrix. Subsequently, to swiftly and
effectively transform s from the frequency domain to the time
domain, the IFFT operation is performed, as FHBHs, where
F is a shifted Nf -point discrete Fourier transform (DFT).
Additionally, to reduce the impact of multipath effects on data,
the last Nc elements of the sequence are duplicated at the
beginning of the sequence. Finally, the transmitted signal x in
the time domain is denoted as

x = AFHBHs, (1)

where A ∈ CN×Nf is the CP insertion matrix with N =
Nf +Nc.

As we aim to evaluate the performance of different se-
quences in ISAC systems, we consider three classic sequences:
the CRS sequence, the LTF sequence, and the TSS sequence.
The first and second ones are used in two mainstream commu-
nication standards, i.e., LTE and Wi-Fi, respectively, offering
fast and reliable wireless connectivity for devices, such as
smartphones and tablets. The third one is a high-performance
sensing sequence designed for traditional sensing applications,
e.g., localization and tracking.

1We consider a strategic co-design scheme to achieve ISAC, and the pilot
signals are used to facilitate sensing [11].
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Fig. 2. The frame structure of the proposed sensing signal.

CRS sequence: The frequency-domain CRS sequence, de-
noted by sLTE, can be expressed as

sLTE(n) =
1√
2
((1− 2c(2n)) + i (1− 2c(2n+ 1))) , (2)

where c(n) is a pseudo-random sequence generated by a Gold
sequence whose length is 31 [12]. The transmitted signal in
the time domain is denoted by xLTE.

LTF sequence: Wi-Fi standards comprise various versions,
such as IEEE 802.11a/b/g/n/ac/ax, and each version has a
different pilot sequence. To ensure backward compatibility, the
modern Wi-Fi standard also contains the pilot used in the old
version. Thus, to universally show the sensing performance
of sequence in Wi-Fi systems, we consider the LTF sequence
in IEEE 802.11a standard [13]. The frequency-domain LTF
sequence is

sWiFi = {1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1,

− 1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 0, 1,−1,

− 1, 1, 1,−1, 1,−1, 1,−1,−1,−1,−1,

− 1, 1, 1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1},

(3)

corresponding to 53 subcarriers with the center one being the
zero subcarrier. The transmitted signal in the time domain is
denoted by xWiFi.

TSS sequence: TSS sequence is used for detecting the
potential target with the matched filtering. Thus, it is designed
towards low autocorrelation by using WeCAN algorithm [14],
Majorization–Minimization (MM) method [15], etc. In this
paper, we adopt the WeCAN algorithm to generate the TSS
sequence, denoted by sTSS, and the length is set as Nr. The
transmitted signal in the time domain is denoted by xTSS.

To avoid the impact of environmental factors, such as
Gaussian white noise, inconsistency of identical actions, or
the variation of the environment, we repeat the three sequences
mentioned above multiple times and then combine them to-
gether to construct the sensing signal, as shown in Fig. 2. It
ensures that the differences in sensing performance are only
caused by the differences in sensing sequence. Furthermore,
to facilitate subsequent packet detection and time synchroniza-
tion, we add the time-domain LTE primary synchronization
sequence (PSS) [16], denoted by xPSS, to the beginning of
the sensing signal, and the length of xPSS is N . Moreover,
the whole sensing signal needs to be continuously transmitted
at a sampling rate and the interval between two successive
transmitting signals is L.

B. Sensing Receiver

In the receiver module, we first perform a packet detection
algorithm to determine whether the sensing signal is received,
which mainly utilizes the periodicity of the PSS sequence.
Specifically, as shown in Fig. 3, the algorithm employs two
sliding windows, denoted by W1 and W2, each with a length
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Fig. 3. Packet detection and coarse timing synchronization algorithms.

of N and separated by a distance L, to calculate the correlation
coefficient of the signals within two windows, as

γ (k) =

∣∣∣∑N−1
n=0 y (k + n)

∗
y (k + L+ n)

∣∣∣∑N−1
n=0 |y (k + n)| |y (k + L+ n)|

, (4)

where y(k) represents the received echo signal at the receiver
with k being the time index and (·)∗ is the conjugate operation.
When the correlation coefficient γ (k) exceeds a threshold for
a sequence of M consecutive points, the sensing signal is
detected.

The packet detection algorithm can only preliminarily de-
termine the beginning index of the sensing sequences. To
correctly measure the CSI, it is necessary to precisely obtain
the beginning index of each sequence to avoid the symbol
timing error. To this end, we adopt both coarse and fine timing
synchronization methods. First, we use the energy detection
algorithm of dual sliding windows [17] to perform coarse
timing synchronization. As shown in Fig. 3, this algorithm
utilizes two consecutive sliding windows, denoted by W3 and
W4, each with a length of N , to calculate the signal energy
within each window. Then, the ratio of the energy within the
later window to that within the former window can be regarded
as the decision variable, as

β (k) =

∑N−1
n=0 |y (k + n)|2∑N−1

n=0 |y (k − n− 1)|2
. (5)

Upon the arrival of the xPSS, β (k) will reach its maximum
value, indicating a noticeable peak, from which the coarse
timing can be obtained.

Then, we perform fine timing synchronization after the
coarse timing synchronization. Since the CSI does not have
significant changes within a short time, the CSI measured
from the received time-domain CRS sequence yLTE, LTF
sequence yWiFi, and TSS sequence yTSS should be almost
the same with the correct timing. To estimate the CSI from
each sequence type, the CP of the sequence is first removed.
Subsequently, to obtain the frequency-domain sequence, the
fast Fourier transform (FFT) is performed. Then, the non-zero
subcarriers are extracted. Finally, the CSI can be obtained by
comparing the received signal to the transmitted one at the
same subcarrier. Taking yLTE for example, the above process
for estimating the CSI can be expressed as

hLTE =
BFQyLTE

sLTE
, (6)

where Q is the CP removal matrix. Similarly, we can also
obtain the CSI of the LTF sequence hWiFi and the CSI of the
TSS sequence hTSS.

After obtaining the CSI, we can perform fine timing syn-
chronization by assuming that the CSI keeps invariable within
a short time. Fig. 4 depicts the variation of CSI’s correlation
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Fig. 4. The variation of CSI’s correlation.

between two adjacent sensing sequences. Taking yLTE for
example, the N -length signal from the received signal does not
precisely correspond to xLTF when there is timing offset, lead-
ing to the channel estimation error. Thus, the estimated CSI
vectors over the frequency domain from different sequence
types are different and the correlation between them is very
low. As the absolute timing offset decreases, the estimation
error decreases and thus the peak of the correlation is achieved
when there is no timing offset.

After the timing synchronization, precise CSI can be ac-
quired. To facilitate subsequent classification tasks, we collect
CSI samples over a period of time. Finally, we can obtain
a CSI matrix, in which one dimension represents time and
the other represents the subcarrier index. However, occur-
rences of packet loss would cause a non-uniform distribution
of CSI information across the temporal dimension, which
brings challenges for subsequent neural networks that require
dimensional-consistent input. To tackle this problem, we em-
ploy a linear interpolation function to interpolate the CSI data
along the temporal dimension.

Furthermore, to reduce the impact of noise on the final
results, we employ a Butterworth lowpass filter to perform
smoothing on the CSI data. Finally, we employ neural net-
works to separately train CSI matrices corresponding to the
xLTE, xWiFi, and xTSS sequences, respectively.

III. EVALUATION

In this section, we first introduce the experiment settings and
then conduct experiments to explore the sensing performance
of the three sequences mentioned above.

A. Implementation

To test the sensing performance of the three sequences,
i.e., xLTE, xWiFi, and xTSS, we establish an experimental
platform using two USRP X310 devices, one for transmitting
the sensing signal with one antenna and the other for receiving
with two antennas. The experiment setup is shown in Fig. 5.
The center frequency is set to 2.4GHz and the bandwidth is
set to 20MHz. The default sensing sampling rate is 100Hz.
The default subcarrier spacings for the CRS sequence, LTF
sequence, and TSS sequence are 480kHz, 312.5kHz, and
480kHz, respectively. Two USRP devices are connected to
the same external clock source to synchronize their RF fre-
quencies, eliminating the need for carrier frequency offset
compensation in the receiver [18]. The FFT number Nf is set
to 64 and the CP length Nc is set to 14. Due to the different
subcarrier spacing, the length of sLTE, sWiFi, and sTSS is set
to 39, 53, and 39, respectively. Each sequence is repeated 6
times.
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Fig. 5. The experiment setup.

To enhance the credibility of the experimental results, we
select two typical smart sensing applications in 6G scenarios:
human pose recognition and dynamic gesture recognition [19].
The evaluation is conducted in an office, which is a widely
used scenario for activity recognition applications. Four volun-
teers are invited to perform seven different behaviors in turn,
i.e., sit, stand, walk, clap, push forward, left to right swap, and
right to left swap. The first three behaviors and an additional
“no volunteer” belong to the human pose recognition, and the
last four behaviors belong to the dynamic gesture recognition.
The classification accuracy is adopted as the metric to evaluate
the sensing performance for both tasks. For each task, we
collect 1,280 CSI samples as the dataset. Among them, 1,024
CSI samples are used for training, and 256 CSI samples are
used for testing. We adopt a convolutional neural network
(CNN) model with three convolution layers of 3 × 3 kernel
size. It is trained and tested on a Linux server equipped with
four NVIDIA GeForce GTX 3080 GPUs.

B. Sensing Performance

Overall sensing performance: Fig. 6 shows the overall
sensing performance under different numbers of receiving
antennas, denoted by NRx. The overall sensing performance of
human pose recognition is higher than that of dynamic gesture
recognition with NRx = 2, since the hand is a smaller object
with more complex articulations compared to the entire human
body. Thus, the spatial resolution with two antennas cannot
markedly improve the accuracy of the dynamic gesture recog-
nition. Additionally, increasing NRx can significantly improve
the sensing performance of human pose recognition tasks.
This improvement is attributed to the higher spatial resolution
associated with the increased number of receiving antennas.
The variation of the relative spatial positions among various
parts of human body is easier to be detected with a higher
ability of spatial resolution. Therefore, an increase in the
number of receiving antennas leads to a notable improvement
in the sensing performance of human pose recognition tasks.
However, increasing the number of receiving antennas (from
one to two) has little impact on dynamic gesture recognition
tasks since the variation of the relative spatial positions among
fingers is relatively small.

Effect of the bandwidth: Fig. 7 shows the effect of
bandwidth on the sensing performance. Sensing performance
increases for both tasks as the bandwidth becomes wider.
This is because a wider bandwidth means more information
for sensing, which improves classification accuracy. However,
when the bandwidth reaches around 11 MHz, the sensing per-
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Fig. 6. Overall sensing performance versus sensing sequences.
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Fig. 7. Sensing performance versus bandwidth in MHz.
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Fig. 8. Sensing performance versus sampling rate in Hz.

formance remains relatively constant despite further increases.
This is because the data collected at this bandwidth already
contains sufficient valid information, and further increasing
the bandwidth does not significantly improve the sensing
performance. Additionally, 11 MHz can be defined as the sat-
uration bandwidth for the sensing performance. Knowing the
saturation point of sensing performance can avoid excessive re-
source allocation for performance improvement. Furthermore,
the sensing performance among different sequences is almost
the same since the CSI estimated from different sequences
remains almost the same.

Effect of the sampling rate: Fig. 8 shows the sensing
performance under different sampling rates. Since human
pose keeps stationary, different sensing sampling rates do not
significantly affect the sensing performance of human pose
recognition tasks, as shown in Fig. 8(a). For dynamic gesture
recognition tasks, the sensing performance increases with
the increasing sensing sampling rate and remains relatively
constant after 200 Hz. Therefore, 200 Hz can be defined
as the saturation sensing sampling rate for dynamic gesture
recognition tasks. This is reasonable since the frequency of
dynamic gestures is typically less than 200 Hz. Furthermore,
the sensing performance of different sequences also exhibits
minimal differences due to the same reason mentioned above.

Effect of the subcarrier spacing: Fig. 9 shows the effect
of subcarrier spacing on the sensing performance. Under a
constant bandwidth, we can vary the number of subcarriers to
control the subcarrier spacing. We can observe that the sensing
performance decreases with the subcarrier spacing. This is
because different subcarriers carry different information and
more information can be obtained as the subcarrier spacing
becomes narrow, leading to a better sensing performance.
Additionally, when the subcarrier spacing is small, the carried
information contained in adjacent subcarriers is similar, lead-
ing to the low impact of the subcarrier spacing on the accuracy.
Specifically, it is evident from the figure that when the sub-
carrier spacing is less than 3 MHz, there is minimal variation
in sensing performance for both human pose recognition and
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Fig. 9. Sensing performance versus subcarrier spacing in MHz.

dynamic gesture recognition. These results suggest that this
subcarrier spacing is sufficient to support both tasks. Thus,
3 MHz can be recognized as the saturation subcarrier spacing
for two applications. Further reducing the subcarrier spacing is
not cost-effective since it increases the number of subcarriers,
adding a burden to the neural network’s training process while
offering marginal improvements in sensing performance.

Based on the above results, for the studied two applications,
it is suggested to use the existing communication sequences,
i.e., CRS and LTF, and the bandwidth and subcarrier spacing
could be set as 11MHz and 3MHz, respectively. The sampling
rate could be set as 100 Hz for the human pose recognition
but 200 Hz for the dynamic gesture recognition. Additional
resources only provide marginal gains in sensing performance.

C. Communication Performance

Since the wireless channel model has been developed for
decades and widely verified to be close to the real-world
channel, we adopt the simulation method to test the com-
munication performance. The cluster delay line model used
in the 3GPP standard [20] is adopted. We adopt 16 QAM
modulation with the signal-to-noise ratio being 15 dB, and the
sampling rate is set to 30.72 MHz. From Tab. I, we can find
that the symbol error rate using the LTF sequence is the lowest
when the subcarrier spacing is 480 kHz. When the subcarrier
spacing is 980 kHz, the performance using the CRS or LTF
sequence is higher than that using the TSS sequence. This
result is reasonable since both CRS and LTF are specifically
designed for communication systems but TSS is specifically
designed for radar systems. Besides, the impact of bandwidth
on communication performance is not consistent due to the
diversified channel gain over the increased bandwidth.

TABLE I
THE SYMBOL ERROR RATE WITH DIFFERENT SEQUENCES

Subcarrier Sequence Bandwidth (MHz)
spacing 3.84 5.76 11.52 16.32 18.24

480 kHz
CRS 7.31 % 8.57 % 6.48 % 7.54 % 6.63 %
LTF 5.65 % 5.71 % 6.43 % 5.99 % 5.37 %
TSS 8.31 % 8.20 % 6.99 % 8.83 % 7.34 %

960 kHz
CRS 6.31 % 6.78 % 7.17 % 7.48% 7.22 %
LTF 6.98 % 6.77 % 7.34 % 6.57 % 5.93 %
TSS 10.38 % 8.66 % 8.38 % 8.15 % 8.75 %

IV. CONCLUSION

In this paper, we have developed a sensing platform for
exploring the impact of sensing sequences and communication
parameters on various sensing applications. Specifically, with
three classical sequences, i.e., CRS, LTF, and TSS, we have
conducted extensive experiments on human posture recogni-
tion and gesture recognition using the USRP X310. The results
demonstrate that the sensing performance among different

sequences is almost the same. Additionally, the sensing per-
formance increases with the bandwidth and sampling rate but
decreases with the subcarrier spacing. Notably, the saturation
bandwidth, sampling rate, and subcarrier spacing of sensing
performance identified in the experiments are of significant
importance for the implementation of sensing applications.
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