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Abstract—Integrated sensing and communication (ISAC) has
emerged as a pivotal technology for next-generation mobile
networks to embed sensing function on communication wave-
forms. A major challenge in ISAC is the effective integration of
sensing and communication functions. Addressing this, this paper
introduces a dual-functional waveform design that builds on
the existing orthogonal frequency division multiplexing (OFDM)
waveform. Unlike prior approaches that generally sacrifice com-
munication performance to enhance sensing performance, our
design contains a null-space sensing precoder that utilizes the
null space of the communication channel to project additional
sensing signals, thus improving the sensing functionality of the
OFDM waveform without degrading any communication perfor-
mance. We formulate a waveform optimization problem aimed at
maximizing the sensing performance under the null-space sensing
precoder and then propose a majorization-minimization (MM)-
based waveform design algorithm. Additionally, to meet the real-
time communication requirement in practice, we analyze the in-
trinsic characteristics of the high-performance sensing waveform
and then develop a low-complexity waveform design algorithm.
Simulation results show that the proposed MM-based algorithm
can dramatically improve sensing performance without incurring
any additional sensing power and degrading the communica-
tion performance. Furthermore, the low-complexity algorithm
achieves substantial improvements in the sensing performance
with much reduced computational complexity.

Index Terms—Integrated sensing and communication, wave-
form design, OFDM waveform, majorization-minimization, pre-
coding

I. INTRODUCTION

Different from traditional communication that connects peo-
ple and things, merely pursuing high-speed, low-latency, and
high-reliability communication, the next-generation mobile
networks aim to achieve the transformation to connected
intelligence and establish a smart society [1]–[3]. Realizing
this goal requires more than just the communication function
provided by 5G networks, and thus the next-generation (6G)
cellular system necessitates native intelligence, communica-
tion, and sensing functions [4]–[7]. As a response to this need,
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integrated sensing and communication (ISAC) has emerged,
aiming at providing native sensing capability on the 6G
communication [8]–[10]. It leverages the sensing capability of
wireless radio frequency (RF) signals, which has been proven
effective in various sensing applications such as positioning,
tracking, gesture recognition, and imaging [11]–[14]. The key
challenge for realizing ISAC is the efficient integration of two
functions within a single hardware.

The most straightforward approach to integrate sensing and
communication functions involves the orthogonal resource
allocation across the temporal domain [15], [16], spectral
domain [17], [18], or spatial domain [19]. However, this
method is inefficient as it fails to explore the potential of
wireless signals to communicate and sense simultaneously.
Consequently, recent studies have investigated the possibility
of reusing communication signals for sensing [20], [21]. In
communication systems, pilot signals, known for their low
autocorrelation sidelobes, are crucial for time synchronization
and channel estimation. These features are also beneficial for
sensing systems that aim at detecting echoes from surround-
ing targets. Thus, pilots in Wi-Fi and cellular systems have
been extensively explored for sensing applications [22], [23].
However, pilots constitute a minor fraction of the resources,
typically less than 0.1 % in Wi-Fi systems.1 This small ratio
limits their overall utility for comprehensive sensing tasks.

To enhance ISAC efficiency, leveraging data signals for
sensing emerges as a preferable strategy. Unlike pilots, data
signals occupy a larger proportion (almost 100%) of com-
munication resources. Yet, this approach presents challenges.
Sensing systems require signals with low autocorrelation,
however, the random data signals are hard to satisfy the
requirement. Therefore, directly using these data signals for
sensing often results in poor performance. Meanwhile, modern
communication systems predominantly utilize the orthogonal
frequency division multiplexing (OFDM) technique to boost
the communication performance. Therefore, our research fo-
cuses on enhancing the sensing performance of the OFDM
data waveform, aiming to reconcile the conflicting require-
ments of high-quality communication and effective sensing
within a single waveform.

1In the IEEE 802.11a standard [24], pilots in a packet, including short
training field (STF) and long training field (LTF), only have a duration of
16 us. Meanwhile, the MAC frame has a maximum length of 2,348 bytes,
corresponding to a duration of 30 ms with the data rate being 6 Mbps. Thus,
we can obtain the occupancy ratio of pilots as nearly 0.05 %.
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A. Related Works

The waveform design for achieving ISAC mainly includes
three kinds of methods: sensing-centric design scheme [25]–
[31], communication-centric design scheme [32], [33], and
joint design scheme [34]. The sensing-centric design scheme
embeds communication symbols within existing sensing wave-
forms and prioritizes sensing performance. There are two
mainstream approaches. The first is based on the chirp wave-
forms, where the main strategy involves modulating communi-
cation symbols onto the chirp through intrapulse or interpulse
modulation techniques [25], [26]. For example, [26] proposed
to modulate communication symbols onto the chirp’s modu-
lation frequency. Although this direct design does not affect
sensing performance, the efficiency of information delivery is
extremely low. To improve the communication rate, a feasible
approach is embedding a series of communication symbols
into each chirp or orthogonal waveform [27]–[29]. For in-
stance, [28] proposed to modulate communication symbols as
the phase variation over the fast time into a linear frequency
modulation (LFM) sensing waveform. The second approach is
the index modulation technique. When M orthogonal wave-
forms are transmitted via M antennas, information delivery
can be achieved by scrambling the sequence of waveforms on
different antennas [30], [31]. Theoretically, this technique can
carry log2 M ! bits per transmission.

The communication-centric design scheme aims to modify
existing communication waveforms to achieve higher sensing
performance. [32] proposed a sparse signal coding method
and the corresponding codebook for communication data,
and theoretically proved that the proposed method could
reduce the autocorrelation sidelobes of the transmit signal.
Differently, [33] optimized each symbol in the transmit signal
directly and developed an algorithm based on the majorization-
minimization (MM) method to suppress the autocorrelation
sidelobes, while keeping the symbol deviation within a certain
range.

On the other hand, the joint design scheme is realized
through optimization. [34] optimized the communication sig-
nal, aiming to minimize the distance between the received
signal at the receiver and the original communication signal on
one hand, and to minimize the distance between the transmit
signal and a known high-performance sensing waveform on
the other hand. An algorithm to balance between sensing
and communication performance was proposed. Although the
above designs can effectively enhance sensing performance,
they also lead to a decrease in communication performance,
e.g., bit error rate and communication rate.

B. Main Contributions

Unlike existing approaches that generally improve sensing
performance by sacrificing communication performance, we
aim to improve the sensing performance of the OFDM data
waveform without degrading communication performance.
Meanwhile, we note that the cyclic prefix (CP), adopted
in OFDM systems to avoid inter-symbol interference (ISI),
introduces a null space of the channel between the transmitter
and receiver. This null space, previously leveraged for the

coexistence of dual communication systems [35], [36], now
serves a novel purpose in our study. In particular, we propose
a null-space sensing precoder that utilizes the null space to
enhance sensing capability by projecting additional sensing
signals into it. Different from the existing work [33] that
improves sensing performance by sacrificing communication
performance, our proposed method can improve sensing per-
formance without impacting communication performance. To
optimize these additional sensing signals for superior sens-
ing performance, we formulate a waveform design problem
centered on minimizing the autocorrelation sidelobes of the
transmit signal. To solve the problem, we propose a waveform
design algorithm based on the MM method. Additionally, we
develop a low-complexity algorithm to meet the real-time
communication requirement in practical systems.

The main contributions of this work are summarized as
follows.

• We propose a novel dual-functional waveform design
method that contains a special null-space sensing pre-
coder. The precoder utilizes the null space of the commu-
nication channel to improve the sensing performance by
projecting extra sensing signals into the null space. It does
not affect the received data signals at the communication
receiver, thus preserving the original communication per-
formance.

• We formulate a waveform optimization problem to maxi-
mize the sensing performance. To solve it, we propose an
MM-based waveform design algorithm where the closed-
form solution is derived in each iteration. We prove that
the proposed algorithm can be guaranteed to converge to
a stationary point of the original problem.

• Considering the real-time communication demand in
some scenarios, we analyze the intrinsic characteristics
of the waveform with high sensing performance and then
develop a low-complexity algorithm without iteration.
Numerical results illustrate performance gains achieved
by the proposed waveform design algorithms over the
conventional OFDM waveform.

C. Organization

The rest of this paper is organized as follows. Section II
introduces the system model and formulates the optimization
problem. In Section III, we develop an MM-based algorithm to
solve the problem. A low-complexity algorithm is developed
in Section IV. Simulation results are presented in Section V,
and the whole paper is concluded in Section VI.

Notations: In this paper, scalars are denoted by lower case,
vectors are denoted by boldface lower case, and matrices
are denoted by boldface upper case. I represents an identity
matrix and 0 denotes an all-zero vector. (·)∗, (·)T , and (·)H
denote complex conjugate, transpose, and Hermitian transpose,
respectively. For a matrix A, vec(A) represents the operation
of vectorization that linearly converts the matrix into a vector,
tr(A) is the trace of A, and ||A|| denotes the Frobenius norm
of A. For a vector a, Diag(a) denotes a diagonal matrix
with each diagonal element being the corresponding element
in a, and ||a|| represents its Euclidean norm. R{·} (I {·})
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denotes the real (imaginary) value of a complex scalar and
| · | represents the absolute value of a complex scalar. Cm×n

(Rm×n) denotes the space of m× n complex (real) matrix.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we introduce the ISAC system model and
the dual-functional signal model. Then, we propose a novel
waveform design method and mathematically formulate the
optimization problem of interest.

A. System Model

As shown in Fig. 1, we consider a broadband ISAC system,
consisting of one single-antenna BS and one single-antenna
user.2 The BS aims to transmit a dual-functional signal for
sending communication data to the user and detecting the echo
signals from surrounding potential targets, simultaneously.3

The communication process can be divided into two parts,
i.e., pilot transmission and data transmission, and we focus
on the latter since it occupies the major part of the total
communication period. To adapt to existing communication
systems, we assume that the user applies the OFDM technique
to demodulate the received signals since OFDM has been
widely adopted in the 4G, 5G, and Wi-Fi communication
systems.

Detection

Dual-functional
BS

User

Target

+CP

IDFT

-CP

DFT

Data

Transmitter

Sensing receiver

*

Echo

+

Fig. 1. An ISAC system model, where we propose to add some parts marked
with a special color into the transmitter of the BS for improving the sensing
performance of OFDM signals.

B. Dual-Functional Signal Model

Due to the frequency selective fading caused by the mul-
tipath effect, severe ISI will be incurred by the direct trans-
mission. To avoid it, the OFDM technique is adopted and the

2The proposed waveform design in this paper can be easily extended to the
multi-user scenario with the orthogonal frequency division multiple access
(OFDMA) method and the time division multiple access (TDMA) method.
Specifically, with the OFDMA method, a multi-user scenario is equivalent to
the signal-user scenario studied in this paper by using the equivalent channel
between the BS and users introduced in [37].

3In this paper, we focus on detecting the echo signal from the sensing
target, a fundamental process in almost all sensing applications, such as
localization and recognition [38], [39]. The detected echo can be separated
from the received signal for subsequent sensing applications using existing
sensing algorithms.

data is transmitted parallelly over different subcarriers by using
the inverse discrete Fourier transform (IDFT) operation and
inserting a CP. Let so,c ∈ CN×1 denote the data transmitted
to the user with N being the number of subcarriers, and then
the transmitted OFDM signals at the BS can be expressed as

xo,c = AFHso,c, (1)

where F ∈ CN×N denotes the discrete Fourier transform
(DFT) matrix with the element at the k-th row and the l-th
column being e−i2π kl

N /
√
N and A ∈ C(N+L)×N represents

the CP insertion matrix. Specifically, A ∈ C(N+L)×N is used
for appending the last L entries of its input vector to the
beginning of itself, as

A =

[
0 IL

IN

]
. (2)

Then, after undergoing the wireless channel between the BS
and the user, denoted by h = [h0, h1, · · · , hL]

T , and the
operations of CP removal and DFT, the received signal at the
communication user is

yo,c = FT (h)xo,c + n

= FT (h)AFHso,c + n, (3)

where n ∼ CN (0, σ2I) is the complex circular Gaussian
noise vector with zero mean and covariance σ2I and T (·) is
Toeplitz operation that returns a Toeplitz matrix built from a
given vector. Thus, the channel matrix T (h) can be expressed
as

T (h) =


hL · · · h0 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 hL · · · h0

 ∈ CN×(N+L).

(4)
Thanks to the introduction of DFT and CP, the equivalent
channel matrix FT (h)AFH is diagonal such that the data
is parallelly transmitted over different subcarriers, and thus
the ISI is avoided. However, the OFDM technique is designed
purely for the communication purpose without considering the
sensing performance.

Different from communication systems, sensing systems
aim to detect the echo of the transmit signal from the target.
Specifically, the received signal is first processed with a
matched filter, that is, filtering the received signal using the
complex conjugate of the transmit signal. Then, applying
constant false alarm rate (CFAR) detection [40] on the filtered
signal, the sensing system can determine whether the echo
signal from a target is received by comparing the filtered signal
with a pre-set threshold. When there are multiple targets,
the filtered signal is the summation of the autocorrelation of
the transmit signal with different time offsets and amplitude.
Therefore, the autocorrelation from different targets may in-
terfere with each other.

Fig. 2 plots the filtered signal when the conventional OFDM
communication signal is directly used as the transmit signal
and there are two targets, a weak one and a strong one. In
Fig. 2(a), the filtered signals of two targets are separated, while
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(a) Separated signals for two targets.
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(b) Real filtered signal, i.e., the summation of two
separated signals.

Fig. 2. Normalized filtered signals.

Fig. 2(b) shows the real filtered signal at the receiver which is
the summation of two separated signals. It can be observed that
the filtered signal’s sidelobe of the strong target completely
masks the filtered signal’s peak of the weak target, making
the weak target difficult to be detected. Thus, to improve
the sensing performance, i.e., detection probability, we opt to
reduce the sidelobe level of the autocorrelation for the transmit
signal in this paper.

With the consideration that the proposed waveform should
be as compatible as possible with existing communication
systems, we aim to improve the sensing performance of the
OFDM waveform while keeping the structure unchanged. To
this end, the most direct method is to add an additional sensing
signal, denoted by xo,s, to the OFDM signal xo,c, and the
dual-functional signal can be expressed as

x = xo,c + xo,s. (5)

Then, the received signal at the communication user is

y = FT (h)(xo,c + xo,s) + n. (6)

To reduce the impact caused by introducing an additional
sensing signal xo,s, the received signal at the user should
not be impacted by xo,s, i.e., y = yo,c. Thus, we propose
a novel dual-functional waveform design method as shown in
the following theorem.

Theorem 1. The singular value decomposition (SVD) of
T (h) is T (h) = UΛV H and V = [v1, · · · ,vN+L] ∈
C(N+L)×(N+L) is an unity matrix with vn being the n-
th column vector. Then, to realize y = yo,c, the sens-
ing signal should satisfy xo,s = V sso,s where V s =
[vN+1, · · · ,vN+L] ∈ C(N+L)×L is the null-space sensing
precoder, i.e., the null space of the wireless channel, and
ss ∈ CL×1 is the sensing symbol.

Proof: The above statement can be easily proved since

the size of T (h) is N × (N + L), the last L rows of Λ are
all zeros and T (h)V s is a zero matrix.

Based on Theorem 1, we propose a null-space sensing
precoder V s.4 Using it, the sensing performance can be
improved by optimizing the sensing signal without impacting
the communication performance. Note that the time synchro-
nization using the CP would not be influenced since we only
modify the data waveform, and the time synchronization is
realized using pilots. Moreover, the ISI can still be avoided
since the received signal at the communication user is not
affected. The autocorrelation of the transmit signal x can be
expressed by

rn =


N+L−n∑

i=0

x[i]∗x[i+ n], n = 0, 1, · · · , N + L− 1,

N+L+n∑
i=0

x[i− n]∗x[i], n = −N − L+ 1, · · · , 0,

= xHUnx, ∀n ∈ {−N − L+ 1, · · · , N + L− 1}, (7)

where Un is the matrix that the n-th sub-diagonal is 1 and all
other elements are 0 and x[i] is the n-th element of x.

C. Transmit Power

Compared to the original OFDM communication signal
xo,c, a sensing signal xo,s is added into the transmit signal
x. The transmit power is not the summation of that of xo,c

and xo,s since xo,c is not orthogonal to xo,s. To calculate the
transmit power, we can decompose the communication signal
xo,c into two parts, i.e., V c(V c)Hxo,c and V s(V s)Hxo,c,
where V c = [v1,v2, · · · ,vN ] ∈ C(N+L)×N and (V s)HV c =
0. Therefore, the transmit power variation caused by adding
V sso,s is

∆P =
1

N + L

(
||so,s + (V s)Hxo,c||2 − ||(V s)Hxo,c||2

)
. (8)

To simplify the expression, we define ss as so,s + (V s)Hxo,c

with xs = V sss and define xc as V c(V c)Hxo,c. Then, the
transmit signal can be rewritten as

x = xc + xs. (9)

The corresponding total transmit power is

P = P c +∆P =
1

N + L

(
||xc||2 + ||ss||2

)
, (10)

where P c represents the transmit power of the original OFDM
communication signal xo,c, as

P c =
1

N + L
||xo,c||2

=
1

N + L

(
||xc||2 + ||(V s)Hxo,c||2

)
. (11)

D. Problem Formulation

In this paper, we aim to improve the sensing performance of
the OFDM signal without compromising the communication

4Although we propose a null-space sensing precoder for the CP-OFDM
waveform, the proposed method can also be applied to other CP-based
waveforms (e.g., DFT-S-OFDM waveform) since it leverages the null space
introduced by the CP.
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performance under the transmit power limitation. To avoid
the impact on communication performance, the sensing signal
should satisfy the requirement in Theorem 1, i.e., xs = V sss.
Meanwhile, the upper limit of the transmit power is denoted
by Pmax. To improve the SNR of the echo, the transmit power
should equal to its upper limit, i.e., P = Pmax. For the sensing
performance, we focus on reducing the sidelobe level of the
autocorrelation, that is, minimizing the ratio of the sidelobe
level to the peak, as

min

∑L
n=−L |rn|2 − |r0|2

|r0|2
. (12)

In the above, we mainly consider the sidelobe ranging from
−L to L since L represents the maximum coverage of the
BS5. Moreover, we have

|r0|2 = |xHx|2 = ((N + L)Pmax)
2
. (13)

Thus, |r0|2 is a constant and the objective function can be
simplified as

∑L
n=−L |rn|2. Combined with the above analy-

sis, we formulate the waveform design problem to maximize
the sensing performance, as

min
{xs,ss}

L∑
n=−L

|rn|2

=

L∑
n=−L

∣∣(xc + xs)HUn(x
c + xs)

∣∣2 , (14a)

s.t. xs = V sss, (14b)

P =
1

N + L

(
||xc||2 + ||ss||2

)
= Pmax. (14c)

Existing works have proved that the objective function is non-
convex and the constraint (14c) is also non-convex [41]. Solv-
ing Problem (14) directly is challenging due to the complex
and nonconvex objective function, which has a computational
complexity of O (N(N + L)). To address this, we propose a
waveform design algorithm utilizing the MM method [42] in
the following section. The main idea of the MM method is to
simplify the objective function and reduce the computational
complexity in each iteration.

III. DUAL-FUNCTIONAL WAVEFORM DESIGN

In this section, we first introduce a brief overview of the
MM method and then propose an MM-based waveform design
algorithm to solve Problem (14).

A. MM Method

We briefly introduce the general framework of the MM
method in the following. Consider the following problem

P : min
z

f(z), (15a)

s.t. z ∈ Z, (15b)

where f(z) is a differentiable function and Z is the feasible
region. Instead of solving the above problem directly, the MM

5Generally, the range [−L,L] is sufficient for detecting targets in the
coverage of the BS. Additionally, our proposed algorithms can be easily
extended to other ranges with only minor modifications.

method seeks to sequentially solve a series of simple problems.
Specifically, the update method in the l-th iteration is

z(l+1) = argminz∈Z f̄
(
z; z(l)

)
, (16)

where f̄
(
z; z(l)

)
is the surrogate function simplified from

f(z) at the point z(l). Moreover, f̄
(
z; z(l)

)
satisfies the

following two requirements:
• f̄

(
z; z(l)

)
≥ f(z), ∀z ∈ Z;

• f̄
(
z(l); z(l)

)
= f(z(l)).

These two requirements indicate that f̄
(
z; z(l)

)
should be a

globally tight upper bound of f(z) for any z ∈ Z . Thus,
minimizing f̄

(
z; z(l)

)
results in a decrease in the objective

function f(z), as

f(z(l+1)) ≤ f̄
(
z(l+1); z(l)

)
= f(z(l)). (17)

Moreover, f(z) continuously decreases with the progress of
iterations, guaranteeing the convergence of the algorithm [43].
Therefore, by carefully designing f̄

(
z; z(l)

)
, the computa-

tional complexity of each iteration can be greatly reduced.

B. Waveform Design

To apply the MM method, we need to find a surrogate
objective function. We first introduce the following lemma.

Lemma 1 [44]. Give two Hermitian matrices, A ∈ Cn×n and
B ∈ Cn×n, and they satisfy A ⪰ B, that is, A−B is positive
semi-definite. For any z ∈ Cn×1, zHAz can be substituted
by a surrogate function zHBz + 2R

{
zH(A−B)z(l)

}
+

(z(l))H(B −A)z(l) at the l-th iteration.

Based on the above lemma, let f(xs) denote the objective
function (14a), and we have

f(xs) ≤ wHB1w + 2R
{
wH(A1 −B1)w

(l)
}

+ (w(l))H(B1 −A1)w
(l). (18)

where A1 ≜
L∑

n=−L

vec {Un} vec {Un}H and B1 satisfies

B1 ⪰ A1. The details for deriving (18) can be found
in Appendix A. Note that B1 could be λmax

1 I with λmax
1

being the maximum eigenvalue of A1. Meanwhile, through
simple mathematical analysis, vec {Un} /

√
N+L−|n|, n ∈

{−L, · · · , L} is the eigenvector of A1 and the corresponding
eigenvalue is (N + L − |n|). Consequently, we can find that
λmax
1 = N +L. Furthermore, wHB1w in (18) can be further

simplified as a constant, as

wHB1w = (N + L)3(Pmax)2. (19)

Following the same way, we can find that (w(l))H(B1 −
A1)w

(l) is also a constant. Let C1 denote the summation of
the two constants. Then, (18) can be rewritten as

f(xs) ≤ 2R
{
wH(A1 −B1)w

(l)
}
+ C1. (20)

Since the surrogate function in the above is still directly
related to w, rather than the variable xs, and the relationship
between w and xs is complicated, we need to further simplify
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the objective function in the following. Following the similar
procedure for (20), we can obtain the following inequation, as

R
{
wH(A1−B1)w

(l)
}

=(xc + xs)H
(
A

(l)
2 − λmax

1 (xc + xs,(l))(xc + xs,(l))H
)

× (xc + xs)

≤2R
{
(xc+xs,(l))H

(
A

(l)
2 − λmax

1 (N + L)PmaxI

−λmax,(l)
2 I

)
(xc + xs)

}
+ C

(l)
2 . (21)

In the above, A
(l)
2 ≜

∑L
n=−L

(
(r

(l)
n )∗Un + (r

(l)
n )UH

n

)
/2,

λ
max,(l)
2 is not less than the maximum eigenvalue of A

(l)
2 −

λmax
1 (N+L)PmaxI , and C

(l)
2 is a unimportant constant. Using

SVD or other methods to obtain λ
max,(l)
2 requires a high

computational complexity. Thus, to reduce the computational
complexity, λmax,(l)

2 can be set as maxj
∑N+L

i=1 |a(l)ij | where
a
(l)
ij is the element of A

(l)
2 since maxj

∑N+L
i=1 |a(l)ij | is larger

than the maximum eigenvalue.6

From the above analysis, we can finally obtain the surrogate
function, as

f̄
(
xs;xs,(l)

)
= 4R

{
(g(l))H(xc + xs)

}
+ C1 + 2C

(l)
2

≥ f(xs), (22)

where

g(l) ≜A
(l)
2 (xc + xs,(l))

−
(
λmax
1 (N + L)Pmax + λ

max,(l)
2

)
(xc + xs,(l)). (23)

Then, we can solve the following optimization problem in the
l-th iteration, as

min
{xs,ss}

R
{
(g(l))H(xc + xs)

}
, (24)

s.t. (14b) and (14c).

Although Problem (24) is not convex, the optimal solution can
be derived in the following theorem.

Theorem 2. The optimal solution to Problem (24), denoted
by {xs,⋆, ss,⋆}, can be expressed as ss,⋆ = −

√
(N + L)Pmax − ||xc||2(V s)Hg(l)

||(V s)Hg(l)||
,

xs,⋆ = V sss,⋆.

(25)

Proof: Please refer to Appendix B.

Until now, we can solve Problem (14) using the MM method
and the detailed algorithm is presented in Alg. 1. Specifically,
in each iteration, we need to calculate r

(l)
n , A(l)

2 , and λ
max,(l)
2

to obtain g(l) in (23). After that, Theorem 2 is used for
obtaining the next iteration point {xs,(l+1), ss,(l+1)}. As we
have mentioned before, the value of the objective function
decreases with iteration, and thus the proposed algorithm

6According to [45], since A
(l)
2 is Hermitian, its maximum eigenvalue is

equal to ||A(l)
2 ||2 and is no more than the maximum absolute column sum

norm, i.e., ||A(l)
2 ||2 ≤ ||A(l)

2 ||1 = maxj
∑

i |a
(l)
ij |.

converges to a stationary point of the original problem [44].

C. Complexity Analysis

In each iteration of the proposed MM-based algorithm, we
first need to calculate {r(l)n , n = −L, · · · , L} for A(l)

2 and the
computational complexity is O(N(N + L)) since calculating
r
(l)
n requires (N + L − |n|) multiplications, as indicated by

(7). Fortunately, the computational complexity can be reduced
according to the following lemma.

Lemma 2 [46]. For two periodic sequences xp
1 ∈ Cn×1 and

xp
2 ∈ Cn×1, their cross-correlation, denoted by rp, can be

calculated by

rp = IDFT{DFT{xp
1}∗ ◦ DFT{xp

2}}, (26)

where ◦ is the operation of Hadamard product, and DFT{·}
and IDFT{·} represent the operations of DFT and IDFT,
respectively.

According to Lemma 2, we can first use xc + xs,(l) and
0 ∈ CL×1 to construct a periodic sequence, as x̃ = [(xc +
xs,(l))H 0H ]H , and calculate the autocorrelation r̃n following
(26). When n = 0, 1, · · · , L, we have

r̃n =

N+L−n∑
i=0

x̃[i]∗x̃[i+n] =

N+L−n∑
i=0

x[i]∗x[i+n] = rn. (27)

Meanwhile, rn = r∗−n. Thus, {rn, n = −L, · · · , L} can be
extracted from r̃n. The computational complexity for rn is re-
duced to O((N+2L) log(N+2L)). Then, we need to calculate
A

(l)
2 and λ

max,(l)
2 , and the computational complexity can be

neglected since no multiplication is needed. The next step is to
obtain g(l) according to (23) and the main computational com-
plexity comes from A

(l)
2 (xc + xs,(l)). Since A

(l)
2 is a Toplitz

matrix, A
(l)
2 (xc + xs,(l)) is equivalent to cross-correlation

between the first row of A
(l)
2 and xc + xs,(l), and thus

Lemma 2 can also be applied. The computational complexity
of calculating g(l) is O((N + 2L) log(N + 2L)). Besides,
the computational complexity of obtaining {xs,⋆, ss,⋆} with
Theorem 2 is O(L(N + L)). As the maximal number of

Algorithm 1: MM-based Waveform Design Algorithm
for Problem (14).

1 Initialize the maximal error tolerance ϵ > 0 and the
maximal number of iterations Imax;

2 Set iteration index l as 0;
3 Initialize ss,(0) and xs,(0);
4 repeat
5 Calculate {r(l)n }, A(l)

2 , and λ
max,(l)
2 ;

6 Calculate g(l) according to (23);
7 Obtain {xs,⋆, ss,⋆} with Theorem 2;
8 xs,(l+1) = xs,⋆ and ss,(l+1) = ss,⋆;
9 l = l + 1;

10 until ||ss,(l) − ss,(l−1)|| ≤ ϵ or l > Imax.
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iterations is Imax, the total computational complexity of the
proposed MM-based algorithm is

O (Imax (L(N + L) + (N + 2L) log(N + 2L))) . (28)

The convergence speed of the MM method highly depends
on the surrogate function. To accelerate convergence, the
squared iterative method (SQUAREM) can be further utilized
and the main idea is to use two consecutive iterations to find
a faster direction of descent [47].

IV. LOW-COMPLEXITY WAVEFORM DESIGN

The MM-based waveform design algorithm in the previ-
ous section can improve the sensing performance without
degrading the communication performance. However, in some
practical scenarios with the requirement of low latency, it
fails to meet the latency requirements due to the need for
multiple iterations to converge. Therefore, this section pro-
poses a low-complexity waveform design method to address
the low latency challenge. It is noteworthy that the previous
section directly aims at minimizing the sensing performance
and adopts an iterative strategy to achieve the goal. Hence,
to reduce the computational complexity, this section proposes
a completely new waveform design approach. The simplest
idea is to directly superimpose a signal with high sensing
performance on the communication signal. However, this
approach often performs poorly since the sensing signal is not
solely designed for the given communication signal. Therefore,
the solution proposed in this section aims to further enhance
the sensing performance based on this. The main idea is to
first analyze the intrinsic characteristics of high-performance
sensing signals and then optimize the sensing signal based on
the intrinsic characteristics. The specific design approach is
divided into three steps:

• Step 1: Generate a pure sensing signal, denoted by xs,⋆,
by solving Problem (14) using Alg. 1 with xc = 0.

• Step 2: Construct the transmit signal. Find the optimal
combination between xc and xs,⋆ to construct the trans-
mit signal, denoted by xin.

• Step 3: Optimize the transmit signal. Enhance the sensing
performance of the transmit signal by optimizing the
sensing signal. First, explore the intrinsic characteristics
of high sensing performance signals, then select the
appropriate target signal xtar, and finally select the best
xfin to make the final transmit signal as close to xtar as
possible.

In the above, xs,⋆ in Step 1 only needs to be generated
once during the channel correlation time since V s remains
unchanged during the channel correlation time. Thus, the
computational complexity of Step 1 can be ignored. Hence,
we elaborate more details on Step 2 and Step 3.

A. Construct Transmit Signal

In this section, we opt to superimpose xc with eiθxs,⋆,
where eiθ is optimized to further improve the sensing perfor-

Sensing	set
(time	domain)

Communication	set
(constraints	(14b)	&	(14c))

Step	1

Step	2

Step	3
Sensing	set	

(DFT	of	the	autocorrelation)

Fig. 3. The illustration of transmit signal optimization.

mance. The autocorrelation of xc + eiθxs,⋆ can be expressed
as

f̂(θ) =

L∑
n=−L

|rn|2

= 2R
{
ei2θD1

}
+ 4R

{
eiθD2

}
+D3, (29)

where D1 =
L∑

n=−L

|bn|2, D2 =
L∑

n=−L

anbn, D3 =
L∑

n=−L

|an|2 +

2|bn|2, an = (xc)HUnx
c + (xs,⋆)HUnx

s,⋆, and bn =
(xc)HUnx

s,⋆. We aim to minimize f̂(θ) and the optimal
solution, denoted by θ⋆, is given in the following theorem.

Theorem 3. The optimal solution to minimize f̂(θ) is

θ⋆ =

 0, D2 ≤ −2D1,
π, D2 ≥ 2D1,
arccos (−D2/(2D1)), otherwise.

(30)

Proof: Please refer to Appendix C.

According to Theorem 3, the constructed primary transmit
signal is

xin = xc + eiθ
⋆

xs,⋆. (31)

B. Optimize Transmit Signal

Since xs,⋆ is generated in advance and not solely designed
for improving the sensing performance of xc, the improvement
of the sensing performance is limited. To further improve it,
directly optimizing xin is not advisable, which generally needs
iteration. Instead, as shown in Fig. 3, we first analyze the
characteristics of the high-performance sensing signals and
construct the sensing set for these signals. Then, the one
closest to xin (i.e., xtar) is picked out from the sensing set.
Finally, in the communication set formed by constraints (14b)
and (14c), we select the final transmit signal, denoted by xfin,
that is the closest to xtar.

However, it is hard to analyze the characteristic of the signal
with high sensing performance using the transmit signal x
since the autocorrelation in (7) is very complicated. Inspired
by the relationship between the DFT of a periodic sequence
and that of its autocorrelation in Lemma 2, we can first analyze
the DFT of the autocorrelation and then use its characteristic to
design the transmit signal. Specifically, as we have mentioned
before, to calculate {rn, n = −L, · · · , L}, the length of the se-
quence should be N+2L. Thus, the DFT of the autocorrelation
can be denoted as ν ∈ R(N+2L)×1. Note that the value of each
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element in ν is not less than zero since the DFT of the autocor-
relation is the absolute square of the DFT of the sequence. The
autocorrelation rn can be expressed as fH

n ν/(N+2L), where

fn =
[
1, e

−i2πn
N+2L , · · · , e

−i2πn(N+2L−1)
N+2L

]T
∈ C(N+2L)×1. The

problem for maximizing the sensing performance can be
formulated as

min
ν

L∑
n=−L

|rn|2 =

L∑
n=−L

||fH
n ν||2/(N + 2L)2, (32a)

s.t. 1Tν = (N + 2L)Pmax, (32b)
ν ≥ 0, (32c)

where 1 = [1, · · · , 1]T ∈ R(N+2L)×1 and the constraint (32b)
limits the total transmit power, derived from (14c). The optimal
solution can be presented in the following theorem.

Theorem 4. The optimal solution to Problem (32) is

ν⋆ = Pmax1+ FR,2ϕ ≥ 0, (33)

where FR,2 = [R{fL+1}, I{fL+1}, · · · ,R{fN/2+L−1},
I{fN/2+L−1}] ∈ R(N+2L)×(N−1) and ϕ ∈ R(N−1)×1 could
be any vector that satisfies ν⋆ ≥ 0. Consequently, the
optimal value to Problem (32) is (Pmax)2 and rn = 0,
n = {−L, · · · ,−1, 1 · · · , L}.

Proof: Please refer to Appendix D.

Theorem 4 forms the ideal sensing set of the autocorre-
lation’s DFT for a sequence with high sensing performance.
Intuitively, x needs to approach this set if we want to improve
its sensing performance. To this end, we can select a sequence
xtar from the set that is the closest to the constructed primary
transmit signal xin. After that, we derive the final transmit
signal from xtar. Thus, let ν in denote the autocorrelation’s
DFT of xin, and the optimization problem for finding the auto-
correlation’s DFT of xtar, denoted by νtar, can be formulated
as

min
{ν,ϕ}

||ν − ν in||2, (34a)

s.t. ν = Pmax1+ FR,2ϕ, (34b)
ν ≥ 0. (34c)

Since this problem is convex, the closed-form optimal solution
can be derived as

ν tar = Pmax1+ FR,2F
T
R,2

(
λ2 + ν in − Pmax1

)
, (35)

where λ2 is the Lagrangian parameter that satisfies ν tar ≥ 0.
The details can be found in Appendix E.

Due to the existence of λ2, we need to apply the exhaustive
searching algorithm to find ν tar, which may increase the
computational complexity. To avoid this, we directly use a
sub-optimal solution, which is simplified from (35), as

ν tar =Pmax1+ FR,2(FR,2)
T

× (FR,2(FR,2)
T (ν in − Pmax1) + Pmax1)+, (36)

where (a)+ represents the element-wise operation that sets
the element in a to be zero if it is negative. Then, the
corresponding xtar can be derived with the operations of

square root and IDFT, as

xtar = (F part)HDiag{ϕ}
√
ν tar, (37)

where
√
ν tar represents the square root operation on each

element of ν tar, ϕ = [eiϕn ] ∈ C(N+L)×1 is the phase vector,
and Diag{ϕ} ∈ C(N+2L)×(N+2L) is the matrix with the
diagonal being ϕ and other elements being zeros. To force
xtar be close to xin, the phase of each element in xtar should
be the same as that in xin. Thus, ϕ should be

ϕ = ∠(F partxin). (38)

Until now, we have obtained a sequence xtar with good sensing
performance and it is close to xin. However, as xtar does not
satisfy the communication requirement, i.e., no degradation
on the communication performance, it cannot be directly used
for transmission. Instead, we can redesign xs to force x to
approach xtar under the consideration of the transmit power
limitation (14c). Thus, denoting xs,fin as the optimized xs, we
have

xs,fin =

√
(N + L)Pmax − ||xc||2V s(V s)H(xtar − xc)

||(V s)H(xtar − xc)||
. (39)

Then, the final transmit signal is

xfin = xc + xs,fin. (40)

C. Summary of the Low-Complexity Algorithm

The overall low-complexity waveform design algorithm is
presented in Alg. 2. There is no iteration in the low-complexity
algorithm and the computational complexity mainly comes
from the matrix multiplication. There are two types of ma-
trix multiplication: one is for DFT or IDFT, and the other
is related to V s, e.g., (V s)H(xtar − xc) in (39). Their
computational complexity is O ((N + 2L) log(N + 2L)) and
O (L(N + L)), respectively. Therefore, the total computa-
tional complexity of the low-complexity algorithm is

O (L(N + L) + (N + 2L) log(N + 2L)) . (41)

Compared to the MM-based algorithm, the computational
complexity of Alg. 2 is much lower, approaching the com-
putational complexity of the fast Fourier transform (FFT)
operation, i.e., O (N log(N)). Thus, Alg. 2 can satisfy the
latency requirement in practical systems.

Algorithm 2: Low-Complexity Waveform Design Al-
gorithm.

1 Input: The pure sensing signal xs,⋆ and the
communication signal xc;

2 Find θ⋆ according to Theorem 3 and calculate xin;
3 Calculate ν tar with (36);
4 Calculate xtar with (37);
5 Calculate xs,fin with (39);
6 Output: xfin = xc + xs,fin.
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TABLE I
SIMULATION PARAMETERS

Parameter Value
Data length, N 128
CP length, L 32

Communication power, P c 1 W
Sensing power, ∆P 1 W

False alarm rate 10−5

SNR of the strong target 3 dB
SNR of the weak target -7 dB

V. SIMULATION RESULTS

In this section, we present simulation results to validate the
performance of the proposed algorithms.

A. Simulation Setup

The simulation settings are summarized as follows unless
otherwise specified. The length of the transmit data is 128, i.e.,
N = 128, and the length of the CP is 32, i.e., L = 32. The
transmit power for communication is 1 W, i.e., P c = 1W, and
the additional power for sensing is also 1 W, i.e., ∆P = 1W.
Thus, the total transmit power upper bound Pmax is 2 W. For
the communication part, each element in the wireless channel
vector h between the dual-functional BS and the user follows
complex Gaussian distribution with the mean being zero and

variance being 1/(L+ 1), i.e., hl ∼ CN
(
0,

1

L+ 1

)
, l =

1, · · · , L + 1. For the sensing part, we assume that there are
two targets distributed within the area, i.e., a strong one and a
weak one. The echo SNR for the strong target is 3 dB, while
for the weak target, it is -7 dB. The time difference between
the echoes of the two targets is ⌊L/3⌋+4. The received echoes
are detected using the cell averaging (CA)-CFAR method [46],
with one protection cell and a reference cell length of ⌊L/4⌋,
and the false alarm rate is set as 10−5. The main parameters
are listed in Tab. I.

To demonstrate the impact of sidelobe levels and the ef-
fectiveness of the proposed algorithms, this section uses the
detection probability of the weak target for illustration. It is
noteworthy that by controlling the echo SNR as a constant,
performance differences caused by the power increase can be
excluded.

B. Algorithm Investigation

We first pay attention to the convergence behavior of the
MM-based waveform design algorithm (Alg. 1). The variations
of the objective function in (12) and the corresponding decline
after one iteration are shown in Fig. 4. Note that we adopt
the SQUAREM to accelerate the convergence of the proposed
algorithm. From Fig. 4, the algorithm almost converges to
a stationary point within 20 iterations as the decline is less
than 10−3. Moreover, the decline of the iteration is less than
10−4 when the number of iteration is 40. These results verify
the fast convergence of the proposed MM-based algorithm.
Meanwhile, the final objective value is almost zero, which
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Fig. 4. Convergence behavior of the MM-based algorithm.
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Fig. 5. Normalized autocorrelation of three schemes.

means that the sidelobe level is almost zero. It demonstrates
the high sensing performance of the MM-based algorithm.

We also compare the running time and sensing performance
of the proposed MM-based algorithm under different error
tolerances with the low-complexity algorithm, and the results
are shown in Tab. II. Note that both algorithms are imple-
mented using MATLAB on a desktop Intel (i5-13600K) CPU
running at 3.5 GHz with 24 GB RAM. It can be observed
that the running time of the MM-based algorithm is at the
millisecond level while that of the low-complexity algorithm
is at the microsecond level. Thus, the MM-based algorithm
can be used in most communication scenarios and the low-
complexity algorithm can be used in the real-time communi-
cation scenario that demands ultra-low latency. Meanwhile, the
objective values achieved by both algorithms are very close to
0, with the MM-based algorithm achieving a value even closer
to 0. This result verifies the good sensing performance of both
algorithms.

C. Performance Comparison

In this section, we aim to compare the sensing performance
of the proposed algorithms to that of the conventional OFDM
waveform. First of all, Fig. 5 shows the normalized autocor-
relation of the transmit signal in three schemes. It can be
observed that the sidelobe level of the autocorrelation during
the range to be optimized (from −L to L) can be reduced with
our proposed algorithms. The MM-based algorithm achieves
the best sensing performance. Note that a lower sidelobe level
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TABLE II
RUNNING TIME AND SENSING PERFORMANCE COMPARISON

Algorithm
Error tolerance

MM-based algorithm Low-complexity algorithm
10−4 10−5 10−6

Running time (second) 2.7× 10−3 3.0× 10−3 5.8× 10−3 5.4× 10−5

Objective value 4.0× 10−4 4.0× 10−4 4.0× 10−4 9.1× 10−3
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Fig. 6. Detection probability versus SNR of the weak target.
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Fig. 7. Detection probability versus sensing power.

means a higher detection probability. To further demonstrate
the sensing performance of the two algorithms, we will show
the detection probability of the weak target in the following.

Fig. 6 shows the relationship between the detection prob-
ability and the echo SNR for the weak target. Notably, the
corresponding strong target’s echo SNR is always 10dB higher
than that of the weak target. The figure demonstrates that the
detection probability continually rises as the SNR increases.
Moreover, the proposed algorithms can indeed enhance the
sensing performance. It is important to note that the proposed
scheme does not affect the communication performance at
all. The performance of the MM-based algorithm is the best
since it converges to a stationary solution. Furthermore, the
low-complexity algorithm trades sensing performance for less
running time, with the sensing performance lying between
those of the MM-based algorithm and the original OFDM
data signal. Additionally, the performance gain becomes more
pronounced as the SNR increases. To achieve the detection
probability of about 60 %, the low-complexity algorithm
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Fig. 8. Detection probability versus false alarm rate.

requires about 2.4 dB less than the original OFDM signals.
Moreover, the performance gap becomes larger as the SNR
increases. Notably, the main factor affecting the weak target’s
detection probability at high SNR levels is the sidelobe of
the strong target’s autocorrelation since the noise power is
relatively low. Therefore, the performance gap at high SNR
levels suffices to demonstrate that the proposed MM-based and
low-complexity algorithms can effectively mitigate interfer-
ence between different targets, thereby enhancing the sensing
performance.

Fig. 7 shows the relationship between the detection proba-
bility of the weak target and the sensing power. It is important
to note that since the echo SNR of the weak target is fixed,
increasing sensing power only affects the relative power of
xc and xs. The sensing performance can be improved even
without adding extra sensing power. It is because part of the
signal, i.e., (V s)HV sxo,c, is ineffective for communication.
Utilizing this portion of power for sensing can significantly
improve the sensing performance. Even when the sensing
power is low, the MM-based algorithm reaches its performance
limit. Note that the increase of the sensing power would not
influence the SNR gap between the strong target and the weak
target. Thus, the main factor hindering the increase in detection
probability for the MM-based algorithm is channel noise when
the sensing power is low. The above results indicate that
the MM-based algorithm can achieve good sensing perfor-
mance with a low power expenditure. Furthermore, the sensing
performance of the low-complexity algorithm also increases
with sensing power. Because it heuristically superimposes
the existing sensing signal on the communication signal, its
performance is relatively worse than the MM-based algorithm.
Moreover, it also approaches the performance of the MM-
based algorithm when the sensing power is high.

Fig. 8 shows the relationship between the detection proba-
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Fig. 10. Detection probability versus CP length.

bility of the weak target and the false alarm rate. The figure
illustrates that the detection probability also rises as the false
alarm rate increases. This is because a higher false alarm
rate implies a lower threshold for detecting the echo from
a potential target, thereby the detection probability increases.
In practice, the false alarm rate can be set according to the
detection probability requirement.

Fig. 9 plots the effect of the SNR gap between the strong
target and the weak target on the detection probability. Note
that the SNR of the strong target remains constant, i.e., 3 dB,
and we vary the SNR of the weak target to control the SNR
gap. The increase of the SNR gap means the decrease of the
weak target’s SNR. Thus, the detection probability of the weak
target decreases with the SNR gap. When the SNR gap is
low, all three schemes can achieve almost 100 % detection
probability. As the SNR gap increases, the superiority of the
proposed MM-based and low-complexity algorithms begins to
emerge gradually since the autocorrelation’s sidelobe of the
two algorithms is much lower than that of the conventional
OFDM waveform.

Fig. 10 shows the relationship between the detection prob-
ability of the weak target and the length of the CP. From
the figure, it can be observed that the longer the CP is, the
higher the detection probability of the weak target will be.
This is because a longer CP means a longer sequence length
of the transmit signal, which in turn leads to lower sidelobe
intensity, making it less likely for the autocorrelation’s peak
of the weak target echo to be masked by the autocorrelation’s

sidelobes of the strong target echo. Moreover, compared with
the original OFDM communication signal, the performance of
the low-complexity algorithm increases faster as the CP length
increases, since a longer CP provides more freedom for the
sensing signal optimization, thereby bringing more significant
performance improvements.

VI. CONCLUSION

In this paper, we have proposed a novel dual-functional
waveform design method that contains a novel null-space sens-
ing precoder. The precoder is used for projecting the additional
sensing signals into the null space of the wireless channel.
Thus, the proposed waveform design method can enhance the
sensing performance without degrading the communication
performance. A waveform optimization problem has been
formulated for maximizing the sensing performance with the
null-space sensing precoder and the constraint of maximum
transmit power. To solve it, we have proposed an MM-based
algorithm that converges to a stationary point of the formulated
problem. Considering the real-time communication require-
ment in practice, we have also developed a low-complexity
algorithm based on the analysis on the intrinsic characteristics
of the high-performance sensing signals. Finally, numerical
results have been presented to verify the effectiveness of two
proposed algorithms. Results show that the MM-based algo-
rithm significantly improves the sensing performance without
additional sensing power, and the low-complexity algorithm
requires much reduced computational complexity for substan-
tial improvements in the sensing performance.

Our initial study in this work has demonstrated the effective-
ness of the null-space sensing precoder and the corresponding
ISAC waveform design method. In our future work, we will
further develop some practical techniques to facilitate the
implementation of the proposed waveform design. First, the
proposed null-space sensing precoder relies on the perfect
channel estimation. To meet the channel estimation error in
practice, we will further develop robust waveform design
methods based on several existing works, e.g., [48]. Secondly,
we only consider the single-input single-output (SISO) system
in this paper. For the multiple-input multiple-output (MIMO)
system, the null-space sensing precoder still works due to the
existence of CP, and the proposed waveform design algorithm
can be extended, which we leave as our future exploration.

APPENDIX A
DETAILS FOR DERIVING (18)

First of all, we have

f(xs) =

L∑
n=−L

∣∣tr{(xc + xs)(xc + xs)HUn

}∣∣2
(a)
=

L∑
n=−L

∣∣∣vec
{
(xc + xs)(xc + xs)H

}H
vec {Un}

∣∣∣2
(b)
= wH

(
L∑

n=−L

vec {Un} vec {Un}H
)
w, (42)
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where (a) is derived from an identity equation tr
{
AHB

}
=

vec {A}H vec {B} and (b) is obtained by defining w ≜
vec
{
(xc + xs)(xc + xs)H

}
. Then, with defining A1 ≜

L∑
n=−L

vec {Un} vec {Un}H and B1 that satisfies B1 ⪰ A1,

we can apply Lemma 1 and obtain inequation (18).

APPENDIX B
PROOF OF THEOREM 2

With constraint (14b), the objective function can be rewrit-
ten as

R
{
(g(l))H(xc + V sss)

}
, (43)

which is a linear function. To minimize it, the direction of
ss should be the same as that of −(V s)Hg(l). Meanwhile,
there is a limitation of the total transmit power (14c). Thus,
the optimal solution can be expressed as shown in (25), which
ends the proof.

APPENDIX C
PROOF OF THEOREM 3

First, f̂(θ) can be rewritten as

f̂(θ) = 2D1 cos(2θ) + 4D2 cos(θ) +D3

= 4D1(cos(θ))
2 + 4D2 cos(θ) +D3 − 2D1

= 4D1z
2 + 4D2z +D3 − 2D1, (44)

which is a quadratic function with z = cos(θ) ∈ [−1, 1]. Note
that D1 > 0 and thus the minimum of f̂(θ) can be achieved
when z is −D2/(2D1) if z has no range constraint. Since
z ∈ [−1, 1], there exist three cases:

• When −D2/(2D1) ∈ [−1, 1], the optimal z is
−D2/(2D1). Hence, θ⋆ = arccos (−D2/(2D1));

• When D2 > 2D1, the optimal z is -1. In this case, θ⋆ =
π;

• When D2 < −2D1, the optimal z is 1. In this case,
θ⋆ = 0.

Therefore, the optimal solution for minimizing f̂(θ) can be
concluded in (30), which ends the proof.

APPENDIX D
PROOF OF THEOREM 4

The objective function can be rewritten as
L∑

n=−L

||fH
n ν||2/(N + 2L)2

=

L∑
n=−L

(
(R{fn}Hν)2 + (I{fn}Hν)2

)
(N + 2L)2

= (Pmax)2 +

L∑
n=1

2
(
(R{fn}Hν)2 + (I{fn}Hν)2

)
(N + 2L)2

. (45)

In the above, (45) is derived based the fact: (R{fn}Hν)2 +
(I{fn}Hν)2 = (R{f−n}Hν)2 + (I{f−n}Hν)2. To mini-
mize the objective function, ν should be orthogonal to both

R{fn} and I{fn}, ∀n ∈ {1, · · · , L}. Meanwhile, it can be
found that R{fn} and I{fn}, ∀n ∈ {0, · · · , N/2 + L − 1}
are orthogonal to each other. Therefore, ν should be the
linear combination of R{fn} and I{fn}, ∀n ∈ {0, L +
1, · · · , N/2 + L − 1} for minimizing the objective function.
Note that 1TR{fn} = 0, ∀n ∈ {1, · · · , N/2 + L − 1}, and
1TI{fn} = 0, ∀n ∈ {0, 1, · · · , N/2+L−1}. Thus, to satisfy
the power constraint (32b), the coefficient of R{f0} (i.e.,
1 ∈ R(N+L)×1) should be Pmax in the linear combination for
ν. Furthermore, with constraint (32c), the optimal solution to
Problem (32) is expressed as (33), which ends the proof.

APPENDIX E
DETAILS FOR SOLVING PROBLEM (34)

In Problem (34), the objective function is quadratic and
all constraints are linear. Thus, Problem (34) is convex, and
we can utilize the Lagrange multiplier method. The Lagrange
function for Problem (34) can be expressed as

L =||ν − ν in||2 + λT
2 ν

+ λT
1 (Pmax1+ FR,2ϕ− ν) + λT

2 ν, (46)

where λ1 and λ2 are the Lagrange multipliers associated
with the constraints (34b) and (34c). Then, the necessary and
sufficient conditions based on the Karush-Kuhn-Tucker (KKT)
conditions can be expressed as

∂L
∂ν

= 2(ν − ν in)− λ1 + λ2 = 0, (47)

∂L
∂ϕ

= F T
R,2λ1 = 0, (48)

λT
1 (Pmax1+ FR,2ϕ− ν) = 0, (49)

λT
2 ν = 0, λ2 ≥ 0. (50)

With simple mathematical analysis and calculations, we can
derive the optimal solution in (35). This ends the proof.
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