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Abstract—Simultaneous wireless information and power trans-
fer (SWIPT) has been regarded as one of the most promising
technologies for the Internet of Things (IoT). However, in some
scenarios where one function takes priority over the other
one, existing single-level optimization models do not apply to
formulate this class of problems. To address it, we employ
bilevel optimization in this paper and consider a reconfigurable
intelligent surface (RIS)-assisted SWIPT system. Specifically, the
harvested power is maximized in the lower-level problem and the
sum rate is maximized in the upper-level problem. We first derive
the optimal set of the lower-level problem and then transform
the bilevel problem into an equivalent but more tractable form.
Subsequently, a block-wise bilevel-based beamforming design
(B3D) algorithm is developed, which converges to the stationary
point of the bilevel problem. Finally, simulation results are
presented to verify the performance of the proposed algorithm.
Compared to the existing optimization schemes, the proposed
algorithm achieves a higher sum rate with the same harvested
power.

I. INTRODUCTION

Leveraging the advantages of low cost and the abilities
of wireless transmission, sensing, and computation, massive
Internet of Things (IoT) devices have been extensively de-
ployed for a wide range of applications across various fields
[1]. However, the sustained growth of IoT devices is hindered
by the energy supply bottleneck. Traditional energy supply
methods relying on batteries or wired connections limit the
application scenarios. To address this issue, energy harvesting
(EH) technology has emerged as a solution, enabling the wire-
less supply of power to IoT devices through radio frequency
(RF) signals. Meanwhile, RF signals inherently possess the
function of information delivery. Consequently, simultaneous
wireless information and power transfer (SWIPT) has been
proposed and attracted a great deal of attention as it can use
a single signal to accomplish two objectives: power transfer
and information delivery [2], [3]. While existing research
focused on exploring the tradeoff between these two objectives,
three primary schemes have emerged. The first one aims to
maximize the performance of the information delivery under
the requirement of the power transfer [4], while the second
one pursues the maximization of the harvested power [5], [6].
The third one directly maximizes the tradeoff between the two
objectives through appropriate weighting [7].

However, in some scenarios, the priorities of the two objec-
tives might be in order, with one objective taking precedence
over the other. For instance, in situations where a majority

of IoT devices are grappling with power shortages, the base
station (BS) must prioritize maximizing harvested power be-
fore optimizing the information delivery rate. Achieving such
a goal poses significant challenges with existing optimization
methods. For example, when employing the weighting method,
if the weight assigned to one objective significantly outweighs
the other, the performance of the former objective can be
maximized while that of the latter one is hard to be guaranteed.
To address this challenge, another burgeoning optimization
method, namely bilevel optimization [8], [9], has gained promi-
nence. In the bilevel problem, there is an upper-level problem
(i.e., the leader) and a lower-level problem (i.e., the follower),
where the optimization variables are coupled over both levels.
The optimal set of the lower-level problem determines the
feasible set of the upper-level problem. Motivated by this, our
paper aims to utilize bilevel optimization for cases where one
function holds higher priority. Additionally, to enhance data
rates, a reconfigurable intelligent surface (RIS) is deployed
near information decoding (ID) users, allowing for channel
reconfiguration [11].

In the formulated bilevel problem, the lower-level problem
strives to maximize the harvested power of EH users and the
upper-level problem seeks to maximize the sum rate of ID
users. Due to the non-convexity of the lower-level problem,
the existing bilevel optimization methods (such as first-order
penalty methods [10]) cannot be applied. Instead, we first
solve the lower-level problem, deriving necessary and sufficient
conditions for the optimal solution. After that, we develop a
block-wise bilevel-based beamforming design (B3D) algorithm
by solving the upper-level problem and show that the pro-
posed algorithm converges to a Karush-Kuhn-Tucker (KKT)
(stationary) point of the original bilevel problem. Notably, our
solving process reveals that the lower-level problem determines
the direction of the beamforming and the upper-level problem
decides the power allocation among beamforming vectors
for ID users. Finally, through comparisons with mainstream
schemes, we demonstrate that our proposed algorithm achieves
a higher sum rate under the same harvested power.

The paper is structured as follows. Section II briefly de-
scribes the system model and formulates the bilevel problem
of interest. In Section III, after deriving the optimal set to
the lower-level problem, we develop a beamforming design
algorithm for the bilevel problem and analyze its convergence
properties and complexity. Simulation results are presented in



Section IV, and Section V concludes the whole paper.
Notations: In this paper, scalars are denoted in lowercase,

vectors are denoted in boldface lowercase, and matrices are
denoted in boldface uppercase. I represents an identity matrix.
(·)∗, (·)T , and (·)H denote complex conjugate, transpose, and
Hermitian transpose, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the model of the RIS-
assisted SWIPT system, and then formulate the beamforming
design as a bilevel optimization problem.

A. System Model

In this paper, we consider an RIS-assisted SWIPT system,
comprising a BS, J single-antenna ID users, and K single-
antenna EH users, as shown in Fig. 1. The BS is equipped
with M transmit antennas, and it aims to convey information
to ID users and transfer power to EH users, simultaneously.
Meanwhile, one RIS is deployed near ID users, enhancing the
communication signals from the BS to ID users. The RIS is
equipped with N reflecting elements with phase being φn.
Since the RIS is far from the BS and EH users are near the
BS, the effect of the RIS to EH users can be neglected.

For the j-th ID user, let sj denote the transmit symbol with
zero mean and unit variance, i.e., E

{
|sj |2

}
= 1, and wj ∈

CM×1 be the corresponding beamforming vector at the BS. To
transfer enough power towards K EH users, the BS randomly
generates an artificial redundant signal vector, denoted by v ∈
CM×1 with mean being zero and variance being V ∈ CM×M ,
i.e., E

{
vvH

}
= V . Then, the total transmit signal at the BS

can be expressed as

x =
∑J

j=1
wjsj + v. (1)

Then, the transmit power of the BS is given by

PBS(wj ,V ) = E
{
xHx

}
=
∑J

j=1
wH
j wj + tr {V } . (2)

Let gk ∈ CM×1 denote the channel between the BS and the
k-th EH user. Then, the received signal at the k-th EH is

yEH
k = gHk (

∑J

j=1
wjsj + v) + nEH

k , (3)
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Fig. 1. RIS-assisted SWIPT system.

where nEH
k is the complex circular Gaussian noise with mean

being zero and variance being σ2. Then, the harvested power
at the k-th EH user is

P EH
k (wj ,V ) = ηE

{(
yEH
k

)H
yEH
k

}
(4)

= η

gHk
 J∑
j=1

wjw
H
j + V

 gk + σ2

 , (5)

where η is the energy conversion efficiency of the EH user.

There are two links between the BS and each ID user,
that is, the “BS–ID user” link and the “BS–RIS–ID user”
link. For the former link, the channel vector is denoted by
hj ∈ CM×1. For the latter link, H ∈ CM×N denotes the
channel matrix between the BS and the RIS, and h̄j ∈ CN×1
denotes the channel vector between the RIS and the j-th ID
user. Then, the equivalent channel of the “BS–RIS–ID user”
link is h̄Hj ΦH , where Φ = Diag

(
ejφ1 , · · · , ejφN

)
∈ CN×N

is the diagonal passive beamforming matrix at RIS. By defining
H̄j = Diag{h̄j}HH ∈ CN×M , it can be rewritten as
φT H̄j with φ =

[
ejφ1 , · · · , ejφN

]T ∈ CN×1. Based on the
aforementioned analysis, the received signal at the j-th ID user
is given by

yID
j =

(
hHj + φT H̄j

)(
v +

∑J

j=1
wjsj

)
+ nID

j , (6)

where nID
j is the complex circular Gaussian noise with

mean being zero and variance being σ2. Then, the signal-to-
interference-plus-noise ratio (SINR) of j-th ID user is

SINRID
j (wj ,V )

=

(
hHj +φT H̄j

)
wjw

H
j

(
hHj +φT H̄j

)H
(
hHj +φTH̄j

)(
V+

∑
i 6=j
wiwH

i

)(
hHj +φTH̄j

)H
+σ2

. (7)

B. Problem Formulation

In this paper, the BS has two objectives, i.e., power transfer
for EH users and information delivery for ID users. The former
objective holds precedence and the latter one is secondary.
Thus, our objective is to maximize the sum rate of ID users
following the maximization of the total harvested power of
EH users. Meanwhile, to further improve the data rate of ID
users, we also optimize the phase of each reflecting element
at the RIS. Therefore, this problem can be formulated as the
following constrained bilevel programming:

max
{wj ,V ,φ}

J∑
j=1

log2

(
1 + SINRID

j (wj ,V )
)
, (8a)

s.t. {wj ,V }∈arg max
{w′

j ,V
′}

{
K∑
k=1

P EH
k (w′j ,V

′) (8b)

|PBS(w′j ,V
′) ≤ Pmax

}
,(8c)

|φ(n)| = 1, ∀n. (8d)



Here, the lower-level problem aims to maximize the total
harvested power (8b) under the power limitation (8c) of the
BS with Pmax being the budget. Within the set of the optimal
solution to the lower-level problem, the upper-level problem
aims to maximize the sum rate of ID users under uni-modulus
constraint (8d) on all elements of the RIS passive beamforming
vector. Different from the conventional single-level problem,
we need to solve the lower-level problem and obtain the
corresponding set of optimal solutions, rather than only one
optimal solution. Meanwhile, existing methods for bilevel
optimization cannot be directly applied since they are designed
for the case where the lower-level problem is convex [10] while
the lower-level problem of this paper is non-convex.

III. BEAMFORMING DESIGN ALGORITHM

In this section, we first solve the lower-level problem and
then solve the upper-level one. Finally, a block-wise bilevel-
based beamforming design (B3D) algorithm is developed.

A. Optimal Set to Lower-Level Problem

It is easy to show that the objective function of the lower-
level problem is convex, but the problem is not convex since it
aims to maximize a convex function. Hence, we cannot directly
solve it with existing convex optimization methods. To address
it, we will convert the problem into a more easily tractable yet
equivalent form. Specifically, we can define G =

∑K
k=1 gkg

H
k

and rewrite V as the linear combination of M vectors, i.e.,
V =

∑M
m=1 fmf

H
m. As a result, the lower-level problem can

be rewritten as

max
{wj ,fm}

η

 J∑
j=1

wH
j Gwj+

M∑
m=1

fHmGwm+Kσ2

, (9a)

s.t.
J∑
j=1

wH
j wj +

M∑
m=1

fHmfm ≤ Pmax. (9b)

It is similar to a Rayleigh quotient maximization problem, and
thus the optimal set can be given in the following Theorem.

Theorem 1: The necessary and sufficient condition of the
optimal solution to the lower-level problem is

wj = αj ḡ1, V = |β|2ḡ1ḡH1 , (10)
J∑
j=1

|αj |2 + |β|2 = Pmax, αj ∈ C, β ∈ C, (11)

where ḡ1 is the eigenvector of the largest eigenvalue for G.
From Theorem 1, we can observe that, to maximize the

sum of harvested power, all beamforming vectors for ID users
and artificial redundant signal matrix for EH users are directly
determined by the eigenvector of the maximum eigenvalue of
G, i.e., ḡ1. This result meets our intuitive perception since ḡ1
is the most efficient beamforming direction and all transmit
power should be focused on this direction for maximizing
the summation of harvested power in the lower-level problem.
Meanwhile, the power allocation among beamforming vectors

and the artificial redundant signal matrix is not given and only
needs to satisfy the condition (11).

Until now, we can derive the closed-form of the optimal
solution set of the lower-level problem, as shown in Theorem 1.
In the next part, we will apply the obtained optimal set to solve
the upper-level problem.

B. Proposed Algorithm to Bilevel Problem

Substituting the derived optimal set into the lower-level
problem, we can get the following reformulated constrained
optimization problem

max
{αj ,β,φ}

J∑
j=1

log2

(
1 + SINRID

j (αj ḡ1, |β|2ḡ1ḡH1 )
)
, (12a)

s.t.
J∑
j=1

|αj |2 + |β|2 = Pmax, (12b)

|φ(n)| = 1, ∀n. (12c)

Before solving it, we have the following Lemma for β.
Lemma 1: To maximize the sum rate of ID uses, β should

be zero.
Proof: From the expression of SINR, we can find that

SINR decreases with |β|2. Therefore, the sum rate also de-
creases with |β|2 and β should be zero for maximizing the
sum rate, which ends the proof.

Next, we can adopt the weighted sum mean square error
(WMMSE) algorithm [12] to transfer the objective function
into an equivalent form. Specifically, we introduce auxiliary
variables µj , ωj > 0, ∀j, which stand for the receiver gain
and weighting coefficient of ID user j. Let ej denote the mean
square error (MSE) of ID user j, which is given by

ej = E
{

(µHj y
ID
j − sj)(µHj yID

j − sj)H
}

= −2R
{
µHj

(
hHj + φT H̄j

)
αj ḡ1

}
+ |µj |2σ2

+ |µjαj |2
J∑
i=1

∣∣∣(hHj + φT H̄j

)
ḡ1

∣∣∣2 + 1. (13)

Then, the constrained optimization problem (12) is equivalent
to the following WMMSE problem:

min
{αj ,φ,µj ,ωj}

J∑
j=1

ωjej − logωj , (14a)

s.t.
J∑
j=1

|αj |2 = Pmax, (14b)

|φ(n)| = 1, ∀n. (14c)

Based on the block structure of this problem, we can partition
the variables into four blocks, αj , µj , ωj , and φ and apply the
block coordinate descent (BCD) method to solve it. To be more
specific, the blocks of the variables are updated successively
by solving each corresponding subproblems. In the following,
we will show the closed-form solutions of each block.



Block-ωj . We optimize ωj , ∀j in parallel by fixing the other
variables. In this case, the corresponding subproblem is given
by

min
ωj

ωjej − logωj . (15)

Based on the first order optimality condition, the optimal
solution to problem (15) is given by

ω?j = 1/ej , ∀j. (16)

Block-µj . Similarly, we optimize µj , ∀j in parallel by fixing
the other variables, which ends up with the following subprob-
lem

min
µj

− 2R
{
µHj

(
hHj + φT H̄j

)
αj ḡ1

}
+ |µj |2σ2

+ |µjαj |2
J∑
i=1

∣∣∣(hHj + φT H̄j

)
ḡ1

∣∣∣2 . (17)

Therefore, the optimal solution to this problem is given by

µ?j =
αj

(
hHj + φT H̄j

)
wj

|αj |2
∑J
i=1

∣∣∣(hHj + φT H̄j

)
ḡ1

∣∣∣2 + σ2

. (18)

Block-αj . We optimize αj by fixing the other variables. The
subproblem can be given as,

min
{αj}

−2ωjR
{
µHj

(
hHj + φT H̄j

)
αj ḡ1

}
+ωj |µjαj |2

J∑
i=1

∣∣∣(hHj + φT H̄j

)
ḡ1

∣∣∣2 , (19a)

s.t.
J∑
j=1

|αj |2 = Pmax, (19b)

which is not convex due to the constraint. To address it,
constraint (19b) can be relaxed into:

∑J
j=1 |αj |2 ≤ Pmax.

Since the objective function decreases with |α|, it can be
shown that the optimal solution after the relaxation satisfies
the constraint (19b). Thus, the optimal solution is

α?j =

(
ωjµ

∗
j

(
hHj + φT H̄j

)
ḡ1

)∗
∑J
j=1 ωj

∣∣∣µ∗j (hHj + φT H̄j

)
ḡ1

∣∣∣2 + λ
, (20)

where λ ≥ 0 is the optimal Lagrange multiplier for constraint
(19b). Here, scalar λ can be obtained via the search algorithm
until constraint (19b) is satisfied.
Block-φ(n). By defining x =

∑J
j=1 ωjµjH̄jαj ḡ1, y =∑

j=1 ωj |µj |2H̄jBhj , A =
∑
j=1 ωj |µj |2H̄jBH̄

H
j , B =∑J

j=1wjw
H
j , the subproblem with respect to φ(n) becomes

min
φ(n)

2R{φ(n) (y(n)− x(n))}

+ 2R

φ(n)
∑
m 6=n

A(n,m)Φ(m)∗

 .(21a)

s.t. |φ(n)| = 1. (21b)

Algorithm 1: B3D Algorithm for Bilevel Problem (8).

1 Initialize variables αj , µj , ωj ,∀j, and φ. Set the
tolerance of accuracy ε > 0 and maximum number of
iterations Imax and the iteration number i = 0;

2 repeat
3 Update ωj ,∀j by (16);
4 Update µj ,∀j by (18);
5 Update αj ,∀j by (20);
6 Update φ by (22);
7 until the gap between consecutive values of the

objective function is under ε or i > Imax.

Thus, the optimal solution is

φ(n)?=

exp

iπ−i∠
y(n)−x(n)+

∑
m 6=n

A(n,m)φ(m)∗

 . (22)

So far, we have obtained closed-form solutions for these
four subproblems. The proposed algorithm is summarized
as Algorithm 1. In each iteration, the above four steps are
implemented sequentially.

C. Analysis and Discussion

Until now, we have proposed the B3D algorithm for bilevel
problem (8) as shown in Algorithm 1. To develop this algo-
rithm, we first obtain the necessary and sufficient conditions
of the optimal solution to the lower-level problem as shown in
Theorem 1 and then equivalently transfer the bilevel problem
to problem (12). Furthermore, problem (12) is transferred to
problem (14) using the WMMSE method. Note that they share
the same set of global optimal solutions and KKT conditions.
After that, the BCD method is adopted to solve problem (14),
ensuring convergence of the iterates generated by our algorithm
to a stationary point of problem (14). Based on the above
discussion, it can be concluded that the solution obtained
by Algorithm 1 is a stationary point of bilevel problem (8).
Furthermore, from the above process, it can be seen that the
direction of beamforming vectors is determined by the lower-
level problem, and the power allocation among beamforming
vectors is decided by the upper-level problem.

Next, we can analyze the computational complexity of
the B3D algorithm. Specifically, in each iteration, the com-
putational complexities of four steps are O(1), O(JMN),
O(JMN + log 1

ε ), and O(JMN), respectively. Here, ε is
the tolerance of accuracy. Meanwhile, the maximum number
of iterations is Imax. Therefore, the overall computational
complexity of the B3D algorithm is

O
(
Imax

(
3JMN + log

1

ε

))
. (23)

Our proposed algorithm offers two advantages in compari-
son to existing algorithms for bilevel problems, e.g., [9], [10]:



• The existing algorithms mainly address the specific bilevel
problem with the lower problem being convex or strongly con-
vex. Unfortunately, the lower problem in the bilevel problem of
interest is non-convex and there is a lack of algorithms tailored
for such a bilevel problem. Our proposed B3D algorithm
effectively solves this bilevel problem, obtaining a first-order
stationary point.
• To deal with the bilevel problem, the existing algorithms

tend to either use double-loop penalty methods [10], where
the outer loop updates parameters for penalty and the inner
loop solves the problem under given the penalty parameter
or compute the inverse of the Hessian matrix of the lower-
level problem to get the hyper-gradient of the upper-level
objective function [9]. As a result, those algorithms have a
high computational complexity in general. In contrast, the B3D
algorithm has a much lower computational complexity as it
requires only a single-loop structure.

IV. SIMULATION RESULTS

In this section, we aim to evaluate the performance of the
proposed beamforming design algorithm for the RIS-assisted
SWIPT system.

A. Simulation Setup
The central points of the BS and the RIS are located at

(0, 0) and (200, 100), in meter (m), respectively. The number
of transmit antennas at the BS is 12, i.e., M = 12, and the
number of reflecting elements at the RIS is 50, i.e., N = 50.
The number of EH users is set as 8, and they are randomly
located within the radius of 5m from the BS. The energy
conversion efficiency is set as 0.5. Meanwhile, the number
of ID users also is 8, and they are randomly located within
the radius of 200m from the coordinate (150, 150). For the
large-scale fading of the wireless channel, it is modeled as

L(d) = 30 + 36 log(d), (24)

where d is the individual link distance in the meter. For the
small-scale fading, it follows Rician fading and is modeled as

H s =

√
ε

ε+ 1
ar(θ

r)at(θ
t)H +

√
1

ε+ 1
H0, (25)

where ε is the Rician factor, H0 is the non-line-of-sight
component whose entries follow the distribution CN (0, 1),
at(θ

t) and ar(θ
r) are the transmit and receive array re-

sponse vectors with θt and θr being the azimuth an-
gles of departure and arrival, respectively. The univer-
sal expression for array response vector is a(θ) =
M−1/2[1, ei

2π∆
λ sin(θ), · · · , ei 2π∆

λ (M−1) sin(θ)], where λ is the
wavelength and ∆ is the antenna spacing. ∆ is set as λ/2. For
the RIS-related channel, i.e., H and h̄, ε is set as 3dB. For the
remained channel, i.e., hj and gk, ε is set as 9dB. Moreover,
the noise power is 10−9W and the transmit power limitation
of the BS is set as 40dBm.

B. Performance Verification
To better show the performance of the proposed algorithm,

we adopt two benchmark schemes as
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Fig. 2. Convergence behavior of the proposed algorithm.
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Fig. 3. Performance comparison among three schemes.

• Conventional scheme. It aims to optimize a single-level
problem. Specifically, the sum rate is considered as the ob-
jective function with the requirement of harvested power
being P req. For such a problem, due to the constraint of
the power requirement being non-convex, we apply the
penalty dual decomposition (PDD)-based method as the
baseline for finding the first-order stationary point of non-
convex problems [13].

• Power maximization scheme. It only considers maxi-
mizing the sum of harvested power for EH users without
considering the sum rate.

Fig. 2 shows the convergence behavior of the proposed
algorithm, that is, the evolution of the sum rate versus the it-
eration number. Notably, the proposed algorithm demonstrates
rapid convergence, achieving its optimal result within a few
iterations. Additionally, we also compare the running time of
the proposed algorithm with that of two benchmark schemes,
as shown in Tab. I. Note that all schemes are tested on a
desktop Intel (i5-13600K) CPU with 16 GB RAM and the
tolerance of accuracy is set as 5 × 10−3. From the table,
we can see that both the proposed algorithm and energy
maximization scheme exhibit minimal running times, while
the running time of the conventional scheme is considerably
higher. This discrepancy arises because the PDD-based method
for the conventional scheme involves double loops, whereas
our proposed algorithm operates with a single loop, offering
closed-form solutions for each subproblem. Meanwhile, when
the required harvested power in the conventional scheme is
the same as the maximized harvested power of the proposed



TABLE I
PERFORMANCE COMPARISON AMONG THREE SCHEMES.

Scheme Proposed Conventional Power Maximization
Running time (s) 0.126 488 2.87× 10−4

Sum rate (bit/s/Hz) 5.1015 1.6032 0.6586
Maximized/Required harvested power (W) 0.6948 0.6948 0.6948
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Fig. 4. Effect of CSI estimation error.

algorithm, the sum rate of the latter is much higher, further
proving the effectiveness of the proposed algorithm.

Next, to comprehensively compare the performance (the
sum rate and the harvested power) among three schemes, we
plot the relationship between the sum rate and the harvested
power for each scheme, as shown in Fig. 3. In the con-
ventional scheme, the sum rate varies with the requirement
of the harvested power, resulting in a curve depicting the
tradeoff between the sum rate and harvested power. This curve
represents the achievable region of the conventional scheme.
For the proposed algorithm and energy maximization scheme,
the harvested power is maximized first, resulting in a single
point for each scheme. From the figure, it is evident that the
obtained point of the proposed algorithm is located at the
top right of the curve of the conventional scheme. It means
that under the same sum rate/harvested power, the harvested
power/sum rate of the proposed algorithm is higher than that
of the conventional scheme. This result is reasonable due to the
following reasons. We derive the optimal set of the lower-level
problem and then maximize the sum rate within the optimal
set, while the conventional scheme simultaneously considers
the sum rate and harvested power, leading to convergence to
a stationary point with low performance.

Moreover, we evaluate the effect of CSI estimation error on
the harvested power and the sum rate, as shown in Fig 4.
Note that we set P req as the maximum value obtained by
the power maximization scheme for the conventional scheme.
Meanwhile, the channel with the estimation error is modeled
as: ĥ =

√
1− ρh +

√
ρnh, where ρ denotes the ratio of the

CSI error power to ||ĥ||2 and nh is the error vector whose
entries follow the distribution CN (0, 1). For the harvested
power, three schemes share the same curve and the harvested
power decreases with the ratio of the CSI error power. The sum
rates of the proposed algorithm and the conventional scheme
decrease with the ratio of the CSI error power, while that of the

power maximization scheme remains invariant. This is because
the former two opt to maximize the sum rate, but the latter one
does not consider the sum rate.

V. CONCLUSION

In this paper, we considered the case where the power
transfer function takes precedence over the information de-
livery function in the RIS-assisted system. Consequently, we
formulated a bilevel optimization problem, where the lower-
level problem maximizes the harvested power and the upper-
level problem maximizes the sum rate. We first derived the
optimal set to the lower-level problem, which determines the
direction of beamforming vectors. After that, we developed
a B3D algorithm for the original problem with the help of
the BCD method. Finally, by comparing it with benchmark
schemes, numerical results showed that the proposed algorithm
achieves a higher sum rate with the same harvested power,
which underscores the effectiveness and superiority.
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