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Abstract—Behavior recognition plays an essential role in nu-
merous behavior-driven applications (e.g., virtual reality and
smart home) and even in the security-critical applications (e.g.,
security surveillance and elder healthcare). Recently, WiFi-based
behavior recognition (WBR) technique stands out among many
behavior recognition techniques due to its advantages of being
non-intrusive, device-free, and ubiquitous. However, existing
WBR research mainly focuses on improving the recognition
precision, while neglecting the security aspects. In this paper,
we reveal that WBR systems are vulnerable to manipulating
physical signals. For instance, our observation shows that WiFi
signals can be changed by jamming signals. By exploiting the
vulnerability, we propose two approaches to generate physically
online adversarial samples to perform untargeted attack and
targeted attack, respectively. The effectiveness of these attacks
are extensively evaluated over four real-world WBR systems.
The experiment results show that our attack approaches can
achieve 80% and 60% success rates for untargeted attack and
targeted attack in physical world, respectively. We also propose
three methods to mitigate the hazard of such attacks.

Index Terms—Behavior recognition, WiFi, Genetic algorithm,
Adversarial sample

I. INTRODUCTION

Behavior recognition is a key enabler for a wide range of
essential human-centric applications (e.g., virtual/augmented
reality and smart home) and even the safety-critical applica-
tions (e.g., healthcare and security surveillance). Traditional
approaches utilize cameras [1], [2], sonar [3], [4], or wearable
devices [5], [6] to capture behavior information, including
gesture, activity, and the like. However, these approaches have
their respective drawbacks, including the risk of visual privacy
leakage, limited sensing range, and inconvenience inherent in
using on-body sensor. Compared to these methods, WiFi-based
solutions stand out by the advantages of being non-intrusive,
contactless, device-free, and ubiquitous [7]–[20].

Existing WiFi-based behavior recognition systems extract
behavior-relevant features from WiFi signals by measuring
signals’ channel state information (CSI). Previous studies of
CSI-based behavior recognition system (termed as CBRS)
focus on either improving the recognition accuracy or en-
abling the CBRS’s environment-adaption ability [9], [14],
while lacking the comprehensive exploration for its security
issues. In fact, the security problem of CBRS is of essence,
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because the recognition results are frequently related to the
vital interests (e.g., economic interest and life safety) of CBRS
users. For instance, an adversary could manipulate certain
wireless signals to mislead the decision of a fall detection
system, threatening users’ life safety. Even worse, in a smart
home application, if an activity associated with turning the
light on is falsely recognized as the activity of turning the gas
on or opening the door, the user’s life or property safety would
be directly threatened.

Current CBRSes dominantly leverage machine learning-
based methods for behavior recognition, but the emergence
of adversarial samples severely threat the security of ma-
chine learning classifiers [21], [22], thus a natural concern
arised: Are these CBRSes vulnerable to practically physical
adversarial samples? If so, to what extent? In this paper,
we study the security issue of CBRSes under adversarial
environments by designing physical online attacks. To this
end, we first explore the feasibility of manipulating the input
CSI samples of CBRSes in the real world. We find that
jamming signal could induce CSI absence in normal CSI
samples due to the regulation of the CSMA/CA protocol
[23]. The CSMA/CA protocol is adopted by network interface
cards (NICs) in CBRSes and NICs control the transmission of
signals. Therefore, it is possible to perform effective attacks by
emitting jamming signals (standards-compliant WiFi signals)
towards the transmitter of the CBRS, .

Although it is feasible to manipulate the input CSI, to
achieve effective attacks is still difficult due to the following
challenges: 1) Stealthiness: The attack should maintain the
property of stealthiness so that the attack could not be easily
detected by the CBRS user; 2) Disdifferentiability: Existing
targeted attack methods mainly rely on adding perturbations to
normal samples. The process of the perturbation optimization
is differentiable. However, jamming signal changes the CSI in
CBRS by causing CSI absence instead of adding perturbation,
and this process is non-differentiable; 3) Robustness: To launch
effective targeted attacks, the attacker should immediately
emit jamming signals as long as the user starts to perform
a behavior; otherwise, the attack will not jam the specified
position in the normal CSI sample, resulting in the degradation
of the attack effectiveness. Nevertheless, it is difficult to
synchronize the jamming signal in the physical world. Besides,
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Fig. 1. Consequences of untargeted attack and targeted attack.

the CSI sample of a specific behavior is not unique. Therefore,
the jamming signal designed for a known CSI sample may be
ineffective to the one collected during online attack.

By overcoming the above challenges, we propose two
approaches to launch physical-world untargeted and targeted
attack against CBRSes, respectively. As shown in Fig. 1, the
untargeted attack can lead the CBRS to recognize a behavior
demonstrated by the user (‘fall’) as an unkown wrong one
(‘walk’, ‘run’, or ‘sit down’). The targeted attack can make
the CBRS recognize the behavior (‘fall’) performed by the
user as the one specified by the attacker (‘sit down’).

In detail, in order to overcome the first challenge, as our
method exploits the CSI absence, we need to explore if the
CSI absence also occurs in normal CSI samples. To this
end, we first collect a large number of normal CSI samples
and perform statistical analysis over them. We find that CSI
absence exists in some normal CSI samples as well. In this
case, as long as the degree of the CSI absence (i.e., the number
of absence times and the time length of each absence) caused
by jamming signals is similar to that in normal CSI samples,
the stealthiness of the attack can be guaranteed. Based on
the result of this statistical analysis, we design an untargeted
attack approach, in which we control the number of jamming
times and the time length of each jamming to ensure sufficient
stealthiness.

To address the second challenge, we first design an encoding
scheme to encode jamming signals as bit sequences. With this
scheme, we can leverage the genetic algorithm [24] consisting
of three manipulation operations (duplication, crossover, and
mutation) to optimize the jamming signal to generate targeted
adversarial samples. As this optimization method does not re-
quire the differentiability, we can address the second challenge
fundamentally.

To deal with the synchronization problem in the last chal-
lenge, we take the effect of the delay into account during
optimization. We simulate the effect of delay by extending
the fitness function in the genetic algorithm to a weight-based
one. Moreover, to suppress the impact of the diversity of CSI
samples, we introduce multiple CSI samples for each behavior
when calculating the fitness score. Such countermeasure can
help bit sequences improve their adaption abilities to the
differences among different CSI samples.

In the evaluation part, we conduct comprehensive exper-
iments on four CBRSes in real environments to study the
effectiveness of our attack approaches. We invite 17 volunteers
to collect both normal CSI samples and adversarial ones. The
experiment results show that an attacker is able to achieve over
80% success rates in untargeted attacks. The success rate for
targeted attack can reach 60%.

In summary, our contributions are as follows:
• We study the security issues of existing CBRSes in the

physical world. To our best knowledge, we are the first
to achieve both untargeted attack and targeted attack in
CBRSes physically.

• We conduct comprehensive evaluation over four CBRSes.
The results demonstrate that an attacker can achieve over
80% and 60% success rates on untargeted and targeted
attacks, respectively.

• We show that our attack approaches can be easily gener-
alized to other WiFi-based sensing applications, such as
user authentication. Moreover, We propose three ways to
mitigate the harmfulness of the attacks.

II. BACKGROUND AND ATTACK FEASIBILITY

This section introduces the CBRS, the CSMA/CA protocol
adopted by WiFi NICs, the formulation of the adversarial
environments in CBRSes, and our threat model.

A. CSI-based Behavior Recognition

A CBRS usually contains two modules, i.e., CSI acquisition
and learning-based behavior classification [8]. Below, we
introduce each module elaborately.
CSI acquisition: In a CBRS, users obtain behavior informa-
tion by measuring CSI from WiFi signals. Since CSI describes
how the signal experiences power attenuation and phase shift
caused by human behavior, it can record abundant behavior
information. Taking a CBRS with a transmitter and a receiver
as an example, the transmitted signal stx is reflected/absorbed
by human body and becomes srx at the receiver end. Then,
the CSI H is estimated using known stx and srx. Since CBRS
transmits signals with a unit of packet and a behavior usually
takes a period of time, a behavior is recorded by a CSI sample
containing the CSI of all packets transmitted during this period
[25]. Therefore, a CSI sample has t rows and f columns of
CSI value, where t is the number of packets and f is the
number of used frequency. The CSI sample will be further
processed in the next module.
Learning-based behavior classification: This module op-
erates in two steps: feature extraction and behavior classi-
fication. In feature extraction, the CSI sample H extracted
from the prior module first goes through some preprocesses
(e.g., low-pass filtering and interpolation [13], [15]). Then,
an extraction method (e.g., statistical scalar calculation [10])
is applied to the preprocessed H to get a feature vector x.
Without loss of generality, we use fext(·) to represent the
whole feature extraction process: x = fext(H). In the second
step, a machine learning classifier Fw(·) parameterized by w is
built to map the feature vector x to the probabilities of a set of



labels. Each label corresponds to a category of behavior. The
label that has the largest probability is the prediction result of
Fw(·): y = Fw(fext(H)) = Fw(x), where y is the predicted
behavior label of x. To train the classifier, a batch of labeled
CSI samples (i.e., training set) is collected and the prediction
error rate between the prediction label and ground-truth label
is minimized. Once being well trained, the classifier can be
used to predict the labels of unseen CSI samples, achieving
the goal of behavior recognition.

B. CSMA/CA Protocol and CSI Absence

CSMA/CA protocol: NICs conform to the IEEE 802.11
a/b/g/n/ac/ax communication standard [26]. In these standards,
CSMA/CA protocol is adopted to avoid collisions among
signals at the same transmission channel but from different
transmitters (each region in the world is allowed to use a
specific number of channels [27] and each channel has f
frequency). There are two main anti-collision mechanisms
used by the CSMA/CA protocol: carrier sensing and collision
avoidance. In a WiFi signal transmission task, the carrier sens-
ing mechanism works at first. It lets the transmitter listen to the
shared medium (e.g., WiFi signals in the wireless network) to
determine whether another transmitter is transmitting signals
at the same channel or not. If the transmitter detects that the
signal power of the same channel in the shared medium is
larger than a threshold, the collision avoidance mechanism
will stop the transmitter transmitting packets and wait for
a period of time. After that, the transmitter will repeat the
“carrier sensing”-“collision avoidance” loop until the shared
medium is detected clear, i.e., the sensed power of the signal
at the same channel is smaller than the threshold. In the
transmission process, the carrier sensing mechanism keeps
working to guarantee that the transmitter stops transmitting
once collision occurs in the shared medium.
CSI absence: As mentioned in Section II-A, each CSI sam-
ple is composed of CSI values of multiple packets over a
period of time. In a CBRS, the time interval between any
two consecutive packets approximates a constant value, i.e.,
the transmitter sends packets at equal time intervals. In this
way, each CSI sample can stably record the information of
behavior. Suppose that the ith transmission channel is used, the
transmission rate is 100 packets per second, and each behavior
continues for two seconds, then each CSI sample H should
have dimensionality of (t, f). Ideally, t equals to 200 (100
packets/s × 2s). However, once we use another transmitter
(attacker) to continuously emit signals (termed as jamming
signals) at the ith channel towards the CBRS’s transmitter
(victim), the aforementioned CSMA/CA protocol will stop the
transmission of the victim transmitter. The victim transmitter
will wait until the attacker transmitter stops the jamming. In
this case, t < 200. That is, the number of rows in attacked CSI
sample H ′ is less than 200, which means that some rows of
the normal CSI sample are absent. This CSI absence caused by
jamming signals makes the attack feasible as it manipulates H
to H ′ (H ′ ̸= H). In the remainder of this paper, the jamming

signal is denoted by sj . The impact of the jamming signal to
H is denoted as J(·) and we have H ′ = J(H, sj).

C. Behavior Recognition in Adversarial Environments

Given a classifier Fw(·), a feature vector x and its label
y, an adversarial attacker launches an attack by generating an
adversarial sample x′, so that Fw(x

′) ̸= y (untargeted attack)
or Fw(x

′) = y′ (targeted attack), in which y′ is a targeted
label. Prior works [21] have shown that the targeted attack
can be achieved by generating an adversarial perturbation by
optimizing the following objective function:

min ||x− x′||p, s.t. Fw(x
′) = y′ and x′ ∈ X, (1)

where Fw(x
′) = y′ is the attack goal and x′ ∈ X means

that the generated adversarial sample x′ is in a valid set.
Then, an optimization algorithm is leveraged to generate the
perturbation. In a CBRS, the adversarial perturbation is indeed
the jamming signal sj . The objective function can be re-written
as follows:

min ||fext(H)− fext(J(H, sj))||, (2a)
s.t. Fw(fext(J(H, sj))) = y′ and J(H, sj) ∈ X.(2b)

In our attack scenario, as the jamming effect J(H, sj) is non-
differentiable, we leverage the genetic algorithm to achieve the
optimization objective.

D. Threat Model

Untargeted threat model: Untargeted attack attempts to fool
the CBRS to output a false behavior label, which is not
the one that the user demonstrated. In this threat model, the
attacker does not need to have any prior knowledge about
the CBRS. This model is a black-box one, which minimizes
the constraints on the attacker. The attacker only needs to emit
jamming signals towards the CBRS to influence its transmitter
to launch attacks.
Targeted threat model: Targeted attack aims to mislead
the CBRS to output a behavior label that is specified by
the attacker. For the targeted attack, we have the following
assumptions: 1) The attacker can detect when the CBRS user
starts to perform an activity. This can be achieved by using
WiFi-based behavior detection methods [28]; 2) We assume
the targeted attack as a grey-box attack, i.e., the attacker knows
the detail of the feature extraction method fext(·) and the
architecture of the targeted classifier. In fact, this is very nature
since existing feature extraction methods and classifiers are
public in the literature [13]–[15]. Note that the attacker does
not need to know the detailed parameters of the classifier used
by the victim CBRS.

III. UNTARGETED ATTACK

In this section, we introduce the approach for untargeted
attack. An attacker can use NICs or software defined radios
(SDRs) (e.g., USRP [29]) to emit jamming signals. Besides,
the attacker should know the WiFi transmission channel (target
channel) used by the CBRS and the attack should not be easily
detected, i.e., the jamming signal should have stealthiness.
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Fig. 2. Time interval distributions of CBRS and communication channels.

In the following sections, we first explain the reasons why
the above requirements are necessary, and then introduce our
designs to enable the attacker to meet these requirements.

A. Target Channel Determination

To jam the legitimate signal in a CBRS, the attacker needs
to determine the channel used by the victim transmitter, i.e.,
knowing the channel index (each permitted channel has a
unique index). Intuitively, we can employ a NIC or SDR
to collect signals around the CBRS to detect the channel
index. However, there are many transmission channels used
for daily communications in the ambient environments. As
a result, the target channel might be overwhelmed by other
irrelevant transmission channels, which confuses the attacker.
Fortunately, to identify the target channel, the attacker can
utilize the time interval between any two continuous packets
to distinguish the target channel from other irrelevant ones.
This is because such time intervals are stable in a CBRS but
generally unstable in a communication system. To validate
the feasibility of the above countermeasure, we first collect
a batch of WiFi signals with different transmission channels
around a CBRS, and then calculate the time intervals for
each transmission channel. The box-plot of the time interval
distributions are shown in Fig. 2. It can be observed that the
time intervals of the target channel are significantly stable
(with small box and a few black circles), while those of other
transmission channels are unstable (with large box and lots of
black circles). Therefore, the attacker can easily distinguish
the target channel from other irrelevant ones according to the
time interval.

B. Stealthiness of Attack

In order to launch attacks stealthily, a sophisticated attacker
should make the jamming signal be effectively concealed,
i.e., the adversarial CSI samples should be difficult to dis-
tinguish from normal ones. Thus, we conduct an preliminary
experiment to explore the feasibility for attackers to satisfy
the stealthiness. In the experiment, we first collect over 2000
normal CSI samples in a normal laboratory environment from
six reproduced CBRSes [7]–[11], [30]. Then we calculate the
time intervals in each CSI samples. The experimental result
shows that the CSI absence appears in over 50% normal
CSI samples. The reasons causing this phenomenon are: 1)
The reflection/absorption/occlusion of human body may hinder
the signal propagation, resulting in the CSI absence in the
received signals. This kind of CSI absence is also a kind
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Fig. 3. Generation flow of untargeted jamming signals.

of feature of user behavior, because different behaviors cause
different reflection/absorption/occlusion. 2) There are massive
WiFi signals in the ambient environment. Some of them
may be at the target channel, leading to the CSI absence in
normal CSI samples. 3) With the hardware imperfection of
the transmitter/receiver, some packets may not be success-
fully transmitted/received, which also induces CSI absence.
Therefore, it is difficult for the CBRS to judge whether a
CSI absence is induced by malicious jamming signals or other
natural factors.

Afterwards, we count the number of CSI absence times
in every one-second in each CSI sample. We find that the
maximal frequency of CSI absence is smaller than 8 and most
time lengths of CSI absences are less than 80 milliseconds.
Therefore, similar to the X in Eq. 2, we define the valid set. In
the valid set, each CSI sample contains no more than Nabs CSI
absence times per second, and the time length of the longest
CSI absence in this sample is less than Tabs milliseconds. In
our experiments, we empirically set Nabs and Tabs as 8 and
80, respectively. Accordingly, to guarantee the stealthiness, the
number of jamming attempts per second and each jamming
duration should be smaller than Nabs and Tabs milliseconds,
respectively. In this way, the generated adversarial CSI sample
will fall into the valid set with large probability, and hence be
indiscernible from normal CSI samples.

C. Attack Signal Generation

Our untargeted attack approach aims to achieve an attack
that is imperceptible to users, while minimizing the require-
ments for attack. Thus, we opt to generate random jamming
signals for untargeted attack. In this way, attackers do not
need to have any prior knowledge about the target CBRS and
the user cannot find the attack pattern. Based on the analysis
in Section III-B, we summarize the untargeted jamming signal
generation flow to the following steps: 1) Dividing one second
into Nabs segments in the temporal domain. Each segment is
1/Nabs milliseconds. 2) Randomly generating Nabs jamming
start time points (from t1s to tNabs

s ) for Nabs segments, the
jamming signal will be emitted since the start time point. 3)
Randomly generating Nabs jamming time lengths (from l1s to
lNabs
s ) for Nabs segments, with each time length less than or

equals to Tabs milliseconds. 4) In one second, the jamming
signal is emitting at tis for lis milliseconds (i ∈ [1, Nabs]). A
generation flow of the untargeted jamming signal generation is
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illustrated in Fig. 3. In this example, Nabs = 5 and Tabs = 30.
To launch untargeted attacks at time tatt, an adversary only
needs to repeat the last three steps since tatt.

The essential goal of the above flow is jamming the targeted
channel stealthily. To validate its stealthiness, we invite volun-
teers to repeat three activities (‘walk, sit, and fall’) introduced
in [10] and perform the untargeted attack. Meanwhile, we
collect untargeted adversarial CSI samples (i.e., the signal
samples that under untargeted attacks). Then we show the time
interval distributions of the adversarial CSI samples in Fig. 4.
It can be observed that the majority of adversarial CSI samples
lie in the valid set. Moreover, we found that the waveform of
normal CSI sample is similar to that of adversarial one. Thus,
the proposed untargeted attack conceals itself well.

IV. TARGETED ATTACK

In our targeted attack approach, an attacker can manually
design a jamming signal sa→b

j , such that a CSI sample Ha of
a specific behavior ya can be classified as a target behavior
yb, i.e., yb = Fw(fext(J(H

a, sa→b
j ))).

A. Methodology

To perform targeted attack, conventional approaches are to
randomly generate a perturbation, and then leverage differ-
entiable gradient descent to adjust its elements to optimize
the perturbation. The perturbation can be added to normal
samples to generate adversarial ones [21]. Nevertheless, these
approaches cannot be used to generate sa→b

j in our attack
scenario, because what the adversary can do is to cause
CSI absence (i.e., element loss) of Ha, rather than increas-
ing/decreasing its element values. More importantly, this pro-
cess is non-differentiable.

To address this challenge, we opt to use the genetic al-
gorithm. The core components of the genetic algorithm are
how to calculate the fitness score, and how to encode and
decode the jamming signal. If the genetic algorithm is used in
our attack scenario, the attacker will generate better jamming
signals (the signal with higher fitness score) and encoding
them to feed into a fitness function (designed to calculate
fitness score), until reach the optimum. The optimum is such
a jamming signal that has the highest probability to mislead
the behavior classifier to output a behavior label specified by
the attacker.
Encoding scheme: To feed jamming signal into fitness func-
tion to calculate fitness score, we propose an encoding scheme
for transforming the jamming signal sa→b

j . We observed that
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Targeted jamming
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1011110011
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bit sequence

(a) Encoding scheme.
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(b) Delay method.
Fig. 5. Jamming signal encoding scheme and delay method.

each element in Ha is only in one of the two states, i.e.,
either ‘absent’ or ‘captured’ during attack. In this case, the
state of each element can be encoded as ‘0’ (absent) or ‘1’
(captured). Hence, the jamming signal can be represented by
a bit sequence.

Suppose that the transmission rate of the victim transmitter
is np packets per second and each behavior exists one second,
each normal CSI sample would have np elements for each
frequency. Moreover, since once a packet is not captured,
the elements among all frequency channels correspond to
this packet would be absent simultaneously. Without loss of
generality, we assume that only one frequency is used by the
victim transmitter to ease our following explanation. Under
the above assumptions, the jamming signal can be encoded as
a bit sequence that contains np bits. As shown in Fig. 5(a),
a ‘0’ in the bit sequence means the attacker transmitter emits
jamming signals (making the element absent) and a ‘1’ means
the attacker transmitter stops jamming (making the element
captured). The jamming function J(·) thus can be formulated
as:

J(Ha, sa→b
j ) = Ha ◦ sa→b

j , (3)

where ◦ is Bitwise AND operation [31].
Fitness score: In the genetic algorithm, each bit sequence is
assigned with a fitness score to measure how close it is to
the optimum. In our attack scenario, we regard the confidence
coefficient calculated by the behavior classifier Fw(·) as the
fitness score, because such confidence coefficient measures the
probability that an input CSI sample should be classified as
a behavior label. Therefore, a larger confidence coefficient
means a larger probability, i.e., a larger fitness score. The
fitness score F b of sa→b

j can be calculated by:

F b = Fitb(Fw(fext(H
a ◦ sa→b

j ))) = Fitb(Ha, sa→b
j ), (4)

where Fitb(Fw(·)) is the fitness function and it outputs the
confidence coefficient of the behavior label yb calculated by
the behavior calssifier Fw(·).

B. Suppressing the Impact of Delay

So far, it seems that we can leverage the fitness function
Fit(·) to optimize sa→b

j . However, certain delay exists in real-
world attacks, i.e., the normal CSI sample Ha and jamming
signal sa→b

j are not synchronized. This is because that even
if the attacker instantly emits jamming signals once detects
the beginning of a behavior, the time point that the jamming
signals reach the victim transmitter would lag behind the
beginning time point of the behavior. The lagging is induced
by the propagation delay and hardware delay. The delay would
make the received CSI sample not aligned with Ha ◦ sa→b

j ,
and deteriorate the attack effectiveness.



To suppress the impact of delay, our solution is to enhance
the fitness function. Specifically, the attacker can manually
introduce a delay into the jamming signal during the opti-
mization. The purpose is to improve the tolerance against the
delay. As shown in Fig. 5(b), we deliberately generate a delay
of nd bits in a bit sequence through two steps: 1) Adding
nd ‘1’ in the head of the bit sequence, so that the new bit
sequence contains nd+np bits. 2) Removing nd bits from the
tail of the new bit sequence and a delayed bit sequence with
np bits is finally obtained.

If we denote the function of delaying sa→b
j for nd bits as

D(sa→b
j , nd), Fb is enhanced to a weighted fitness function as

follow:

F b =

nd∑
i=0

ωi · Fitb(Ha, D(sa→b
j , i)), (5)

where ωi ∈ [0, 1] denotes the weight for the i-bit delayed bit
sequence and ωi ≥ ωi+1. In the optimization process, Fb will
continuously increase until the sa→b

j approaches its optimum.

C. Jamming Signal Optimization

With the fitness function, the optimal sa→b
j , i.e., the opti-

mization objective (which is equivalent to the objective in Eq.
2) can be formulated as:

max
sa→b
j

nd∑
i=0

ωi · Fitb(Ha, D(sa→b
j , i)), (6a)

s.t. J(Ha, sa→b
j ) ∈ X. (6b)

Achieving this objective requires the following operations:
1) Initial generation: The attacker randomly generates Nb bit

sequences that are in the valid set as the initial generation.
2) Fitness calculation: The attacker calculates the fitness

score of every bit sequence in the generation.
3) Duplication: The attacker sorts the bit sequences accord-

ing to their fitness scores. The top Ndup bit sequences
are duplicated and the Ndup bit sequences with lowest
fitness scores are removed.

4) Crossover: Ncro pairs of bit sequences are randomly
selected from the generation to perform crossover. In each
pair of bit sequences, we exchange their last ncro bits.

5) Mutation: The attacker first randomly selects Nmut bit
sequences, and then randomly selects nmut bits from
each of the Nmut bit sequences. The Bitwise NEGATION
process [31] is then performed on these nmut bits.

The first operation only needs to be performed once at the
beginning of the optimization, yet the following four opera-
tions are alternately conducted in multiple iterations. A new
generation will be produced in each iteration, which would
be better than the previous generation. However, in practice,
we find that a generation might degrade, i.e., the sum of the
fitness scores of current generation is smaller than that of the
former generation after crossover and mutation. We term this
phenomenon as degeneration. To deal with this degeneration
problem, we introduce a mechanism that the crossover and
mutation operations will be reconducted once degeneration

(a) CSI sample Ha
1 . (b) CSI sample Ha

2 .
Fig. 6. Two normal CSI samples of ‘sit down’ with small differences in red
circles.

occurs. Moreover, in some generations the attacker might
reconduct the crossover or mutation operation to guarantee that
the bit sequence is in the valid set. The iteration will not stop
unless the degeneration continuously occurs for Nend times.
Empirically, Nend is set as 10. When the iteration terminates,
we regard the bit sequence that has the largest fitness score
as the optimum and decode it to obtain the final sa→b

j . In this
way, the adversarial CSI sample generated by J(Ha, sa→b

j ) is
most likely to be classified as behavior yb.

D. Attack Robustness Enhancement

In the real-world scenario, the H for a specific behavior
is not unique. For example, two normal CSI samples of ‘sit
down’ are presented in Fig. 6. We find that although the
holistic profiles of the two curves are similar, their local
profiles are different. In this case, the sa→b

j generated for
CSI sample Ha

1 may be ineffective in attacking CSI sample
Ha

2 . To solve this practical problem, we further enhance the
fitness function and objective function. Specifically, an attacker
can first collect a batch of CSI samples containing that of
behavior ya to train the Fw(·). Then, the attacker can sum the
fitness scores of all CSI samples of behavior ya to improve
the robustness of the generated jamming signal sa→b

j . If we
denote the number of the CSI samples of ya in the batch as
nbat, the enhanced fitness function can be formulated as:

F b =

nbat∑
j=1

nd∑
i=0

ωi · Fitb(Haj , D(sa→b
j , i)), s.t. ωi ∈ [0, 1].

(7)
The corresponding objective becomes:

max
sa→b
j

nbat∑
j=1

nd∑
i=0

ωi · Fitb(Haj , D(sa→b
j , i)), (8a)

s.t. ωi ∈ [0, 1] and J(Ha, sa→b
j ) ∈ X. (8b)

By using the batch and Eq. 7, the attacker can generate a more
robust sa→b

j to attack both Ha
1 and Ha

2 .

V. EVALUATION AND RESULT

Existing CBRSes can be divided into two categories ac-
cording to whether the behavior classifier is based on deep
neural network or not. We selected two representatives for each
category and conducted experiments over them: WiFall [10],
STFT [11], SignFi [9], and WiLSTM [7]. WiFall and STFT
use random forest (RF) [32] and logistic regression (LR) [33]
as behavior classifiers, respectively. The classifiers in SignFi
and WiLSTM are most commonly used deep neural networks,
i.e., convolutional neural network (CNN) and long-short term
memory (LSTM). These four systems can achieve significantly
high behavior recognition accuracy.
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Fig. 7. Experiment setup in three environments.
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Fig. 8. Effectiveness of untargeted attacks in three environments.

A. Experiment Setup and Metrics

Experiment setup: We reproduce four representative CBRSes
and ensure that our implementation has comparable behavior
recognition accuracy to the reference. We summarize the
implementation details as follows: WiFall. In WiFall, six
statistical features are calculated as the input of the behav-
ior classifier. WiFall leverages RF to classify four activities
including fall. The reference classification accuracy in [10] is
98.0%. Our reproduced WiFall achieves an accuracy of 98.5%.
STFT. Frequency domain features are extracted as the input
of classifiers in STFT. STFT can leverage LR to recognize
six activities ‘lie down, fall, walk, run, sit down, and stand
up’. The highest reference classification accuracy in [11] is
90.5%. We reproduce STFT to have an accuracy of 99.7%.
SignFi. Focusing on hand sign recognition, SignFi utilizes a
CNN to classify the features containing both CSI amplitude
and phase. We reproduced SignFi to recognize ten hand signs
that represents ten numbers from zero to nine. The accuracy of
our reproduced SignFi is 97.6%, while the accuracy reported
in [9] is 97.2%. WiLSTM. The WiLSTM system utilizes an
LSTM classifier and CSI amplitudes to recognize six activities
similar to those in STFT. The reproduced WiLSTM has an
equal accuracy with the reference, i.e., 97.3% in [7].

As illustrated in Fig. 7, we implemented these systems
under three different environments, including a laboratory, a
home, and a hall. The victim transmitter was equipped with
an Intel 5300 NIC and three antennas. The transmission rate
of the CBRSes is 100 packets per second and each behavior
lasts two seconds. For the attacker transmitters, we used both
NIC (Atheros 9380) and SDR (USRP B210) to emit jamming
signals. The jamming signals were modulated by LabVIEW
[34]. We invited 17 volunteers (12 males and 5 females) aged

WiFall STFT SignFi WiLSTM
Systems

0

10

20

30

40

50

60

TA
SR

 (%
)

Random Genetic Algorithm

(a) NIC.

WiFall STFT SignFi WiLSTM
Systems

0

10

20

30

40

50

60

TA
SR

 (%
)

Random Genetic Algorithm

(b) SDR.
Fig. 9. Effectiveness of our targeted attack approach (‘Genetic Algorithm’)
and a baselines (‘Random’).

from 21 to 29 to collect CSI samples. In each environment,
volunteers were asked to perform behaviors between the victim
transmitter and receiver (with three antennas). The distance
between the victim and attacker transmitters was about three
meters. We totally collected 10932 normal CSI samples,
12639 CSI samples under untargeted attacks, and 27430 CSI
samples under targeted attacks. We conducted the experiments
by adhering to the approval of our university’s Institutional
Review Board (IRB).
Metrics: We defined two metrics to quantitatively measure
the attack effectiveness: untargeted attack success rate (UASR)
and targeted attack success rate (TASR). UASR is the prob-
ability that our jamming signals mislead the CBRS to output
a false behavior label. It can be calculated by: UASR =
Accnor − Ncor

unt

Nall
unt

, where Accnor, N cor
unt, and Nall

unt are the
reproduced behavior recognition accuracy of our reproduced
systems (e.g., 98.5% in WiFall), the number of correctly clas-
sified untargeted adversarial CSI samples, and the number of
all untargeted adversarial CSI samples, respectively. Similarly,
TASR is the probability that a CSI sample of behavior ya
is classified as the behavior yb when the victim transmitter
is influenced by the targeted jamming signal sa→b

j . It can
be calculated by: TASR =

Ncor
tar

Nall
tar

, where N cor
tar and Nall

tar

are the number of targeted adversarial CSI samples that are
classified as the target behavior and the number of all targeted
adversarial CSI samples of possible (ya,yb) pairs.

B. Overall Attack Effectiveness

To measure the effectiveness of our attack approaches, we
first calculated the UASRs and TASRs for all volunteers, and
then obtained the averages as the final results. The UASRs of
NIC and SDR are shown in Fig. 8. It can be observed that,
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Fig. 10. Effectiveness of untargeted attack under different occlusion objects.
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Fig. 11. Effectiveness of targeted attack under different occlusion objects.

with a NIC as the attacker transmitter, the highest UASRs
for WiFall, STFT, SignFi, and WiLSTM can achieve 74.5%,
83.3%, 87.7%, and 54.0%, respectively. As for the SDR, the
highest UASRs for the four systems are 71.0%, 83.4%, 87.6%,
and 58.6%, respectively. Besides, there is no obvious UASR
difference among the three environments. Especially, the high
UASRs on the three environments indicate that our untargeted
attack approach is significantly effective.

For the targeted attack, we averaged the TASRs over three
environments and compared the targeted attack approach with
a baseline, i.e., the random jamming signal generation method
in the untargeted attack approach. The results of NIC and
SDR are shown in Fig. 9. ‘Random’ means the baseline and
‘Genetic Algorithm’ represents our targeted attack approach.
It can be found that our targeted attack approach outperforms
the baseline in all systems. The highest TASRs of NIC for
these four systems are 56.0%, 52.5%, 46.3%, and 52.0%
respectively. For the SDR, the highest TASRs for these systems
are 60.0%, 55.0%, 48.5%, and 55.0% respectively.

C. Non-Line-Of-Sight Attack

In real-world attack scenarios, the main propagation path
of signals between the victim transmitter and the attacker
transmitter may be occluded by some objects. This attack
scenario is called Non-Line-Of-Sight Attack (NLOS) attack.
The power of jamming signals under this scenario would be
reduced by the occlusion object. We also evaluate our approach
in this extreme case. Specifically, we placed the attacker
transmitter eight meters away from the victim transmitter and
tested with five types of materials contained by the objects
in our daily lives: cystosepiment, glass, wood, hard paper,
and concrete wall. The thickness of them is 10.8, 0.5, 1.0,
2.5, and 28.0 centimeters respectively. The untargeted attack
results of NIC and SDR are shown in Fig. 10. We can observe
that the UASRs of different occlusion objects are similar, no
matter we used NIC or SDR to emit jamming signals. The
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Fig. 12. Effectiveness of untargeted attack under different attack distances.
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Fig. 13. Effectiveness of targeted attack under different attack distances.

reason behind is that the jamming signal is utilized to stop
the victim transmitter emitting signals, rather than change the
values of normal CSI elements. As long as the power of the
jamming signal is larger than the collision avoidance threshold
of the victim transmitter, the attack can be successful. We
also show the targeted attack results in Fig. 11, in which we
can find that there is no obvious difference among different
occlusion objects as well. Therefore, our attack approaches are
still effective under occlusion conditions.

D. Impact of Distance

To explore the impact of the distance between the victim
transmitter and the attacker transmitter, we changed the dis-
tance from three meters to 28 meters with a step of 5 meters.
The UASRs of the NIC and SDR are shown in Fig. 12. Similar
to the results of NLOS attack experiments, the distance (within
28 meters) has negligible effects on the attack effectiveness
in WiFall, STFT, and SignFi. However, the UASRs of the
WiLSTM system are unstable and jitter within the range from
52.3% to 71.5% randomly. This randomness is not induced by
the distance variation, but the randomness in our untargeted
jamming signal generation approach (introduced in Section
III-C). The targeted attack results under different distances are
shown in Fig. 13. Likewise, the distance does not affect the
targeted attack effectiveness much. Therefore, an attacker is
able to effectively launch long-distance untargeted and targeted
attacks, while being hardly detected by CBRS users.

E. Transferability Study

We also evaluate the transferability of our adversarial
samples. We train new classifiers with different architecture
parameters among different tasks by following the standard
setting [35], and then feed the previous adversarial samples
into the new classifier. Specifically, we respectively used an
RF classifier with 100 trees, a LR classifier with ‘one vs. rest’



strategy, a four-layer CNN, and a Bi-LSTM to design jamming
signals in WiFall, STFT, SignFi, and WiLSTM, while testing
the attack effectiveness with an RF classifier with 50 trees, a
LR with multinomial loss, a five-layer CNN, and an LSTM,
respectively. The results show that the TASRs for the NIC are
50.6%, 42.0%, 30.8%, and 37.2% in WiFall, STFT, SignFi,
and WiLSTM, respectively. Meanwhile, the TASRs of the SDR
for these four systems are 53.0%, 45.6%, 32.5%, and 42.0%
respectively. It can be found that the TASRs for WiFall, STFT,
and WiLSTM only drop about 7%, which means that our
targeted attack approach has decent transferability. Although
the TASR of SignFi decreases a lot, it is still higher than
30.0%, which is also impactful in CBRS attacking.

VI. MITIGATION

Geofencing WiFi Signals: Geofencing stops jamming signals
from reaching the victim transmitter. A necessary of our
attack approaches is that the power of jamming signals around
the victim transmitter is larger than the collision avoidance
threshold. Thus, geofencing, such as building walls with metal
and painting walls with electromagnetic shielding paints, is
an effective mitigation solution. However, it is undesirable
to adopt geofencing as: 1) Geofencing also blocks legitimate
WiFi signals, which affects the normal use of WiFi signals
for communication. 2) Geofencing usually is costly. Strategic
geofencing remains challenging.
Adversarial sample detection: This mitigation method pro-
tects the CBRS from attacks by determining if a collected
CSI sample is an adversarial one. The potential adversarial
CSI samples should be discarded to avoid the misclassifica-
tion of the behavior classifier. Specifically, users can build
a classifier to distinguish adversarial samples from benign
ones. To evaluate the performance of this mitigation method,
we trained a one-class support vector machine (SVM) [36]
with the CSI values of normal CSI samples. The results
show that the trained SVM can detect all adversarial CSI
samples, which demonstrates that this mitigation method is
effective in defending against our attack. Nevertheless, the
SVM simultaneously rejected about 50% normal CSI samples,
affecting the normal use of the behavior recognition system.
Therefore, it is difficult to balance the usability and security
while using this mitigation method.
Adversarial training: To mitigate the impacts of adversarial
CSI samples, users can improve the robustness of the behavior
classifier by adding adversarial CSI samples to the classifier’s
training set. In this way, the classification accuracy of adver-
sarial CSI samples in WiFall, STFT, SignFi, and WiLSTM
can achieve 65.0%, 68.8.0%, 75%, and 62.5%, respectively.
However, adopting this mitigation method has to deal with
a trade-off between the usability and security due to the
following reasons: 1) Adding adversarial CSI samples into the
training set brings massive extra overhead since users need
to simulate the attack to collect adversarial CSI samples; 2)
This mitigation method induces the degradation of normal CSI
samples’ classification accuracy, e.g., a 13% decrease in STFT

system. Therefore, this mitigation should be further improved
in defending against the proposed attacks.

VII. RELATED WORK

Behavior recognition systems have been widely deployed
in many human-computer interaction applications. Traditional
behavior recognition system usually is camera-, wearable-,
phone-, or sonar-based [1]–[6], [37], [38]. For example, Guan
et al. [6] proposed to use ensemble LSTM to improve the
gesture recognition accuracy of individual LSTM on wear-
ables. To enable non-intrusive and device-free human behavior
recognition, WiFi-based solutions were proposed and devel-
oped rapidly. For instance, Guo et al. [12] have shown the fea-
sibility of utilizing CSI amplitude and DT/RF/CNN/LSTM to
accurately recognize activities. Nevertheless, previous works
rarely paid attention to the security of the CBRS. In this paper,
we explore the security of CBRS mainly from the perspective
of an attacker.
WiFi-based attack techniques can be divided into active and
passive ones according to whether the attack signal is emitted
by the attacker or not. In the active attack, an attacker emits
WiFi signals to sense physical-layer privacy of victims [39]–
[41]. For example, Ali et al. [40] propose WiKey to sense a
victim’s keystroke. WiKey first emits WiFi signals towards the
victim’s keyboard, and then analyzes the signals reflected off
the keyboard to infer the keystroke. In the passive attack, an
attacker eavesdrops the WiFi signals emitted by victims and
mine private information from these signals [28], [42], [43].
For instance, Cheng et al. [43] extract features from public
WiFi signals to obtain WiFi users’ privacy, such as identity,
location, and financial privacy. To our knowledge, we are the
first to achieve physical attacks towards CBRSes.

VIII. CONCLUSION

In this paper, we proposed two approaches to achieve
untargeted attack and targeted attack against CBRSes, respec-
tively. The experiment results on four real-world CBRSes
demonstrated the high success rates of our attack approaches.
Moreover, our attack approaches can be easily generalized to
other WiFi-based sensing applications. At last, we discussed
two methods to defend against the attacks.
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