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Abstract—Reusing Wi-Fi communication packets for sensing
purpose has been regarded as one of the most cost-effective
ways to realize integrated sensing and communication (ISAC) on
commodity Wi-Fi. However, the channel state information (CSI)
measured from these packets can be heavily compromised by
modern Wi-Fi beamforming protocols tailored primarily to max-
imize communication throughput, hence inadvertently affecting
Wi-Fi sensing performance. To this end, we propose VersaBeam,
a practical ISAC system actively leveraging beamforming to
simultaneously achieve high-performance communication and
sensing in commodity Wi-Fi. Instead of attempting to mitigate
beamforming’s negative impact on sensing, VersaBeam boasts
a novel beamforming design to balance the demands of both
sensing and communication. Additionally, we propose a user
selection strategy to determine the sources for packet reuse and
introduce a method to unify CSI measured from different users’
packets, accommodating variations in beamforming direction.
We implement a prototype of VersaBeam on commodity Wi-
Fi devices and further demonstrate its efficacy through micro-
benchmarking and practical experiments in gesture recognition.

Index Terms—Wi-Fi sensing, wireless communication, beam-
forming, integrated sensing and communication (ISAC).

I. INTRODUCTION

Over the past few decades, Wi-Fi devices have been widely
deployed due to the low cost and high-performance commu-
nication capabilities [1], [2]. This widespread deployment has
also attracted attention for capabilities beyond mere commu-
nication. Recent research has confirmed that Wi-Fi can sup-
port various sensing applications, including detection [3], [4],
recognition [5]–[7], and estimation [8] by extracting channel
state information (CSI) from Wi-Fi packets [9]. However,
most Wi-Fi sensing proposals rely on specialized settings
(e.g., dedicated packets) for sensing purpose. Consequently,
they typically realize sensing and communication leveraging
separate spectrum or temporal resources, thus significantly
limiting efficiency for both. To this end, integrated sensing
and communication (ISAC) has emerged, aiming to efficiently
sense and communicate simultaneously for the future devel-
opment of Wi-Fi technology [10]–[14].

To realize Wi-Fi ISAC, one of the most cost-effective
methods is to directly extract CSI from ongoing Wi-Fi
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Fig. 1: VersaBeam actively leverages versatile beamforming
to realize high-performance sensing and communication in
practical Wi-Fi systems.

communication packets, eliminating the need for additional
spectrum or temporal resources for sensing. Nevertheless,
modern Wi-Fi designs aimed at enhancing communication
can adversely affect sensing performance [15]. A notable
example is communication-oriented beamforming: it enhances
throughput and reliability through directional transmission for
all Wi-Fi traffic compatible with beamforming [16]. When
the communication direction differs from the sensing direc-
tion from the perspective of a Wi-Fi access point (AP), the
power directed toward the sensing area is limited under the
communication-oriented beamforming. Consequently, channel
variations caused by target movements are often obscured by
noise or other interference, resulting in a low signal-to-noise
ratio (SNR) at a sensing receiver. Recently, SenCom [17], [18]
employs signal processing techniques on received signals to
mitigate the negative impact of beamforming on the sensing
performance, passively addressing the challenge. Unfortu-
nately, these techniques at the sensing receiver cannot fun-
damentally resolve the low SNR issue, as the noise and other
interference are mixed with channel variations and cannot be
totally eliminated, especially when the transmit power towards
the sensing direction approaches zero.

To overcome the limitation of the existing work, we propose
VersaBeam, a practical ISAC system that actively leverages
beamforming to realize ISAC and reusing communication
packets for sensing in commodity Wi-Fi systems.1 As shown in
Figure 1, beamforming direction is jointly determined by both

1For Wi-Fi APs not allowing for tuning beamforming protocols, we can
forge beamforming feedback to control the beamforming [19].



communication and sensing needs to achieve high performance
of both functions. However, we still face three challenges
in realizing this idea. First, the theoretical modeling of the
relationship between beamforming and Wi-Fi sensing’s SNR
has not been adequately explored, which raises a barrier to
further beamforming design. Secondly, we aim to enhance
sensing performance with minimal impact on communication,
a challenging balance since both functions are sensitive to
beamforming direction. Thirdly, the ISAC-oriented beamform-
ing matrix varies with user location, leading to inconsistencies
in CSI and SNR measurements even with the same sensing
targets, complicating the establishment of a reliable sensing
deep neural model.

To address these challenges, we begin with a theoretical
analysis of beamforming’s impact on Wi-Fi sensing, con-
firmed through experimental results. To minimize the impact
on communication caused by controlling beamforming, the
communication SNR loss is restricted according to the table
of Modulation Coding Scheme (MCS) index and related SNR
threshold. We also develop an optimization framework that
jointly considers sensing and communication performance to
design an ISAC-oriented beamforming feedback. For the final
challenge of inconsistent CSI and sensing SNR, we introduce
a user selection strategy to ensure high sensing SNR under
the requirement of the CSI sampling rate and then propose a
method to unify CSI to address inconsistencies. In summary,
we make the following major contributions:

• We propose VersaBeam as an effective ISAC solution in
practical systems by actively leveraging the beamforming
and reusing the communication packets.

• We conduct a mathematical analysis of beamforming’s
impact on Wi-Fi sensing, with findings supported by
simulation results.

• We explore an optimization problem to design an ISAC-
oriented beamforming strategy for enhancing sensing
performance with minimal impact on communication.

• We propose a user selection strategy and a CSI unifying
method for resolving the inconsistencies in CSI measured
from different users’ packets.

• We implement VersaBeam prototype with commodity
Wi-Fi devices and extensive experiments confirm that
VersaBeam achieves high-performance sensing with min-
imal impact on communication.

The rest of the paper is organized as follows. Section II
explores the effect of beamforming on Wi-Fi sensing. Sec-
tion III presents the design of VersaBeam in detail. Section IV
and Section V explain VersaBeam’s implementation and report
the extensive evaluations on VersaBeam, respectively. Related
works are briefly captured in Section VI, and the whole paper
is concluded in Section VII.

II. EXPLORING BEAMFORMING FOR ISAC

In this section, we first introduce the existing Wi-Fi beam-
forming basics and then establish the sensing SNR model
under the beamforming. Finally, the impacts of beamforming
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Fig. 2: Wi-Fi beamforming protocol and CSI collection of Wi-
Fi sensing.

on sensing and communication are analyzed with numerical
results.

A. Wi-Fi Beamforming Basic

Beginning with the 802.11ac standard, singular value
decomposition (SVD) beamforming, i.e., a typical
communication-oriented beamforming technique, has
been integrated into Wi-Fi systems [20]. This integration
necessitates channel information between the Wi-Fi AP and
the user. To facilitate it, a channel sounding protocol has been
introduced into Wi-Fi systems. As shown in Figure 2, the
protocol initiates with a null data packet (NDP) announcement
transmitted by the Wi-Fi AP, followed by the broadcast of
an NDP containing predefined pilots to the user. The user
then estimates the channel between the AP and themselves
by comparing the known pilots with the received signals. The
measured CSI can be denoted by Hi ∈ CMR

i ×M
T

, where
MT and MR

i denote the numbers of antennas at the Wi-Fi
AP and the i-th user, respectively.2 Instead of transmitting
Hi back to the Wi-Fi AP, resulting in high overhead, its right
singular vectors, denoted by Vi ∈ CMT×MR

i , is fed back, and
Vi is obtained using SVD, as

Hi = UiΣiV
H
i , (1)

where (·)H is the operation of conjugate transpose, Σi ∈
CMR

i ×M
R
i is a nonnegative real diagonal matrix, and Ui ∈

CMR
i ×M

R
i is a unitary matrix. Note that Vi is unitary, i.e.,

satisfying V H
i Vi = I . The diagonal elements of Σi, denoted

by ρi,m, represent the channel gain of data transmission with
beamforming, and the average SNRs derived from Σi are also
fed back to the AP [20].

Upon receiving the beamforming feedback, the Wi-Fi AP
performs data transmission using Vi as the beamforming
matrix.3 Specifically, the data packet contains two parts, i.e.,
pilot and payload. Specifically, the predefined pilot, denoted

2We ignore the subscript for subcarrier, and the proposed methods in this
paper can be readily applied to the other subcarriers independently.

3There are two modes of beamforming in Wi-Fi systems, i.e., single-user
multiple-in multiple-out (SU-MIMO) and multi-user multiple-in multiple-out
(MU-MIMO). The primary distinction between two modes is the number of
users served simultaneously [21]. Since the effect of beamforming on Wi-Fi
sensing is similar in both modes, we mainly focus on the SU-MIMO mode,
and the proposed method can be extended to the MU-MIMO mode as well.
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by Sp
i ∈ CMR

i ×M
R
i , is used for channel estimation and de-

modulating the subsequent payload. Let sDi ∈ CMR
i ×1 denote

the payload with the transmit power being E
{
sDi (sDi )H

}
=

pI/MR
i . After undergoing beamforming matrix Vi and wire-

less channel Hi, the received signal at the i-th user is given
by:

yi = HiVisi + ni, (2)

where ni is Gaussian noise.

B. Sensing with Beamforming

We now turn our focus to the CSI at the sensing receiver.
As depicted in Figure 2, the sensing receiver measures the
CSI between itself and the Wi-Fi AP by sniffing packets
transmitted by the AP and comparing the received pilot with
the predefined one, i.e., Sp

i . The received pilot of the sensing
receiver at time t is

Y S
i (t) = HS(t)ViS

p
i + N(t), (3)

where Ni(t) is Gaussian noise and HS(t) ∈ CMS×MT

is the
physical-world wireless channel between the Wi-Fi AP and
the sensing receiver with MS being the number of antennas
at the sensing receiver. Consequently, the measured CSI at
the sensing receiver becomes HS(t)Vi + NS(t), instead of
HS(t), where NS(t) = N(t)(Sp

i )−1. Thus, the sensing
performance would be influenced by the beamforming matrix
Vi. To fully understand this impact, it is necessary to develop
a comprehensive sensing model and derive the sensing SNR
expression under the beamforming.

As shown in Figure 3, we start by modeling the channel
HS(t) as the linear combination of the line-of-sight (LOS)
path, denoted by HS,L, the dynamic path related to the
sensing target, denoted by HS,D(t), and other non-line-of-
sight (NLOS) paths, denoted by HS,N. Specifically, for the
dynamic path, the angle of arrival (AOA) is θS and the angle
of departure (AOD) is φS. HS,S can be given as

HS,D(t) = gS,D(t)aS,R(aS,T)H , (4)

where gS,S(t) is the attenuation that varies over time due to
the movement of the sensing target, aS,R = a(θS,MR), and
aS,T = a(θS,MT) with a(θ,M) = [e−2jπ cos(θ)(m−1)d/λ] ∈
CM×1 is the steering vector with d being the antenna spacing
and λ being the wavelength, and it describes phase difference
at different antennas. For the LOS path, HS,L can be similarly
expressed as gS,LaL,R(aL,T)H , and the AOA and AOD are θL

and φL, respectively. The measured CSI under the beamform-
ing can be expressed as

HS,B(Vi, t) =HS(t)Vi = gS,LaL,R(aL,T)HVi + HS,NVi

+ gS,D(t)aS,R(aS,T)HVi + NS(t). (5)

In order to characterize the effect of beamforming on sensing,
we adopt the sensing SNR as the metric and it is defined as
the power ratio of the dynamic path to the power sum of the
LOS and other NLOS paths plus noise. According to [22],
the power sum of other NLOS paths and noise is linearly
proportional to that of the LOS path. Therefore, the sensing
SNR can be calculated as

ηS(Vi) =
E{|gS,D(t)|2}||(aS,T)HVi||2

ξ||gS,L(aL,T)HVi||2 + b
, (6)

where ξ and b are fixed parameters that reflect the power
contributions of other NLOS paths and noise for a given
pair of AP and receiver, and E{·} denotes the operation of
expectation. From Eqn. (6), it is evident that the sensing SNR
is heavily influenced by the beamforming matrix Vi. In fact,
even worse, the sensing SNR could be reduced to zero if
Vi is orthogonal to aS,T. Thus, the sensing performance of
SenCom [17] may be poor since it relies on communication-
oriented beamforming.

C. Impact of Beamforming on Sensing and Communication

We can now analyze the impact of beamforming on sensing
and communication with the help of simulation. For a more
intuitive understanding, we adopt the phase shift beamform-
ing [23] instead of SVD beamforming, despite its suboptimal
performance for both sensing and communication, and there
is only one communication user. Using this beamforming
method, each column of V1 is equal to a(θ,M)/

√
M with θ

representing the beamforming direction. By setting MT = 4,
MR

1 = 1, MS = 1, φL = π/2, and φS = 3π/4, we illustrate
the relationship between sensing SNR and beamforming di-
rection in Figure 4a. For comparison, we also show sensing
SNR without beamforming. It is evident that beamforming
significantly impacts sensing, beneficially or detrimentally,
depending on its direction. Specifically, when the beamform-
ing direction aligns closer to the sensing direction φS, the
sensing SNR improves with beamforming due to increased
power allocation to the sensing direction. Conversely, when
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the beamforming direction deviates from the sensing direction,
sensing SNR decreases, potentially dropping to zero in three
specific directions.

The impact of beamforming direction on communication
is plotted in Figure 4b, where the channel between the Wi-
Fi AP and the user is generated using the Rician fading
channel model [24]. It can be seen that the impact of beam-
forming is also significant, and the beamforming direction
should align with the communication direction so that the
SNR can be maximized. However, from Figure 4, the desired
beamforming directions of sensing and communication usually
differ. For maximizing communication SNR, the direction of
the communication-oriented beamforming should be 0.38π.
However, in this case, sensing performance is seriously af-
fected, i.e., sensing SNR almost being zero. This phenomenon
indicates the poor sensing performance of the existing work
(i.e., SenCom [17]) since it is limited by the communication-
oriented beamforming. Meanwhile, this result highlights the
challenge of balancing the requirements of both functionalities.
Additionally, when there are multiple users, varying user lo-
cations necessitate different beamforming directions, resulting
in diverse sensing SNR values and inconsistent CSI samples
at the sensing receiver. In the next section, we will introduce
VersaBeam to address these challenges.

III. THE DESIGN OF VERSABEAM

In this section, we first give the design overview of
VersaBeam and then introduce the details.

A. Overview

As shown in Figure 5, VersaBeam aims at actively reusing
communication packets for sensing with the proposed ISAC-
oriented beamforming. Its operation is composed of two main
phases: the preparation phase and the deployment phase.

In the preparation phase, VersaBeam establishes a deep neu-
ral model for gesture recognition. Specifically, it first collects a
sensing dataset that contains CSI samples from beacon packets
and data packets under controlling the beamforming direction
towards the sensing target. The CSI samples from beacon
packets in the dataset are used for training a detection model

in the deployment phase. Meanwhile, the CSI samples from
data packets in the dataset are used for training a deep neural
model for gesture recognition.

In the deployment phase, VersaBeam performs gesture
recognition by measuring CSI from the communication pack-
ets. Specifically, VersaBeam first measures the CSI between
the Wi-Fi AP and itself by sniffing the beacon packets
without beamforming. Using these CSI samples and the pre-
trained detection model in the preparation phase, VersaBeam
determines whether there is a sensing target. When there is a
sensing target, VersaBeam designs ISAC-oriented beamform-
ing jointly considering the sniffed genuine communication-
oriented beamforming feedback and the direction of the sens-
ing target, and then appropriate users are selected as the source
for packet reuse. Afterward, the designed beamforming is
used to control the AP’s behavior. Under the ISAC-oriented
beamforming, CSI is measured from communication packets.
VersaBeam unifies the CSI samples from different users’
packets, and these CSI samples are further fed into the pre-
trained deep neural model for gesture recognition.

B. Beacon-Based Detection

Since there may be no sensing target in the scenario, e.g.,
no human or the human being in the static state, continuously
modifying existing communication-oriented beamforming into
ISAC-oriented one would bring a high overhead. To avoid
it, we aim to perform a motion detection first. Meanwhile,
considering the potential negative effects of beamforming on
sensing, we propose to use the beacon packets for detection.
Beacon packets are utilized for periodically broadcasting the
existence of the Wi-Fi AP without beamforming. Thus, the
CSI measured from beacon packets is not affected by beam-
forming. The transmission frequency of beacon packets is low,
around 10 Hz, they cannot support fine-granularity sensing
applications, but they can be used for coarse-grained binary
classification, i.e., detection.

Figure 6a presents the variation of CSI amplitude over time,
and someone is making a specific gesture starting at 15s. It can
be observed that there is a variation of CSI without gesture,
caused by the noise. With gesture, the variation of CSI over
time becomes more obvious due to the dynamic path related
to the sensing target. Thus, it is viable to detect the existence
of the sensing target using the variance of CSI from beacon
packets. Specifically, we first eliminate the effect of the LOS
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Fig. 6: CSI measured from beacon packets: (a) CSI amplitude
over time and (b) CSI variance within a sliding window.



path and other NLOS paths by calculating the mean value of
HS(t) over a sliding window tw and subsequently subtracting
this mean from HS(t) itself, as

H̄S(t) = HS(t)−Mean
over tw

{HS(t)}. (7)

After that, the variance of [H̄S(t)]mT,mS between the mT-
th transmit antenna and mS-th receiving antenna is calculated
over the sliding window, denoted by $S

mT,mS(t). Figure 6b
plots the variation of $S

mT,mS(t) over time and we can observe
that there is noticeable rise after motion. To further avoid
false alarms, support vector machine (SVM) [25] is adopted
with {$S

mT,mS ,∀mT,mS} over all subcarriers being the input,
since it is powerful enough to support binary classification
with a low computational complexity.

C. ISAC-Oriented Beamforming

After detecting a motion, VersaBeam needs to reuse the
communication packets for gesture recognition. According
to the analysis in Section II-C, the existing communication-
oriented beamforming may heavily compromise sensing per-
formance. Thus, to solve this problem, we aim to propose
a novel ISAC-oriented beamforming design method, and the
beamforming matrix is denoted by C. Let us first consider a
simple case where the communication user is only equipped
with one antenna.4 The extension to the multi-antenna case
will be presented based on this simple one.

For the single-antenna user, the transmit data at the AP is s.
After precoding using beamforming matrix c ∈ CMT×1 and
undergoing wireless channel h ∈ C1×MT

, the received signal
can be given as

y = hcs+ n, (8)

where n is the noise with σ2 variance. The resulting SNR can
be expressed as

ηC(c) =
p|hc|2

σ2

(a)
=
p|ρ|2|vHc|2

σ2
, (9)

where (a) holds since the SVD of h can be simplified as
h = ρvH for the single-antenna user. Meanwhile, using the
genuine beamforming feedback v, the maximal SNR is

ηC(v) =
p|ρ|2

σ2
. (10)

According to Shannon’s Theorem [26], the data rate should
continuously increase with the SNR following a logarithmic
function, i.e., log2(1 + ηC(c)), theoretically. Actually, in
practical Wi-Fi systems, as shown in Figure 7, the function
from the SNR to the data rate follows a piecewise function and
is not continuous, due to the finite MCS indices that define
how many useful bits can be transmitted per unit time.5 From
the figure, we can observe that when the SNR is between the
required SNRs of two sequential MCS indices, the data rate

4The proposed design in this section is universal for all users, and thus we
omit the subscript i.

5The table of MCS index and its required SNR can be found in the website:
https://wlanprofessionals.com/mcs-table-and-how-to-use-it/.
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keeps a constant.6 Motivated by this, it is realizable to adjust
the beamforming with almost no communication performance
loss by limiting the communication SNR loss. Let δC denote
the SNR loss upper limit, that is

ηC(v)/ηC(c) = 1/|vHc|2 ≤ δC. (11)

δC is determined by the maximal SNR ηC(v). Specifically,
we first find the MCS index according to the table of MCS
and SNR, and then obtain δC by subtracting the required
SNR threshold for the MCS index from the maximal SNR.
For example, δC should be 4 dB when the maximal SNR
is 24 dB since the required SNR threshold for MCS index
6 is 20 dB. However, VersaBeam cannot directly obtain the
maximal SNR since VersaBeam and the user are generally
at different locations. Fortunately, the beamforming feedback
also contains the average SNR information that represents the
SNR with beamforming, and thus we can directly use it for
determining the upper limit of SNR loss, i.e., δC.

For the sensing performance, we have derived the expres-
sion, i.e., Eqn. (6), for sensing SNR in Section II-B. Since we
aim to design an ISAC-oriented beamforming for improving
sensing performance without compromising communication
performance, the optimization problem can be formulated as

max
c

ηS(c)=
E{||gS,D(t)||2}||(aS,T)Hc||2

ξ||gS,L(aL,T)Hc||2 + b
, (12a)

s.t. cHc = 1, (12b)
|vHc|2 ≥ 1/δC. (12c)

In the above, the first constraint requires that c should be
unitary for compatibility with commodity Wi-Fi systems since
the existing communication-oriented beamforming matrix is
obtained from SVD in Eqn. (1). The second constraint ensures
no communication loss. This optimization problem can be
solved using fractional programming [27]. In practice, to
improve the sensing performance, the sensing receiver is
placed near the sensing area and sensing target [13], [22]. For
example, the sensing receiver could be the mobile phone of the
sensing target. Thus, the AOD of the LOS path and dynamic
path is almost the same, which means aS,T ≈ aL,T, and the
objective function is almost equivalent to ||(aS,T)Hc||2. With

6When the SNR is above the required SNR, the bit error rate is almost
zero, and thus we do not discuss it in the paper.



the help of optimization theory [28], the closed-form optimal
solution to Problem (12) can be derived as

c?=

{
aS,T/

√
MT, if |vHaS,T|2≥MT/δC,(

v+
√
δC−1v⊥

)
/
√
δC, otherwise,

(13)

where v⊥ =
aS,T − vHaS,Tv

||aS,T − vHaS,Tv||
is orthogonal to v. From

the above solution, we can find that when the communication-
oriented beamforming direction v is close to sensing direction
aS,T, i.e., |vHaS,T|2 ≥ MT/δC, we can directly use aS,T

as the beamforming matrix; otherwise, we need to fine-tune
v for enhancing the sensing performance with ensuring the
communication performance.

For the multi-antenna user, the maximal SNR ηC(V )
achieved by the genuine beamforming matrix can also be
obtained from the beamforming feedback by averaging the
average SNRs over all streams. δC can be determined using
the same method for the single-antenna case. For the ISAC-
oriented beamforming feedback, the solution in Eqn. (13)
can be extended to the two-antenna case.7 Specifically, since
the transmit power for each stream is the same, the genuine
beamforming matrix V = [v1,v2] ∈ CMT×2 is equivalent
to V ′ = [v′1,v

′
2] from the perspective of the communication

performance, where

v′1 =
vH1 aS,Tv1 + vH2 aS,Tv2√
|vH1 aS,T|2 + |vH2 aS,T|2

, (14)

v′2 =
(aS,T)Hv2v1 − (aS,T)Hv1v2√
|vH1 aS,T|2 + |vH2 aS,T|2

. (15)

Since the v′1 and v′2 are the basis vectors in the plane spanned
by v1 and v2, the beamforming direction is not influenced and
the communication performance remains the same. Moreover,
v′1 is structured to maximize the dot product with aS,T in
the plane spanned by v1 and v2, and v′2 is orthogonal to v′1
and aS,T. Thus, we only modify v′1 since the gain brought
by modifying v′2 is meagre. The solution in Eqn. (13) can
be applied by substituting v′1 for v, and the ISAC-oriented
beamforming matrix is C = [c?,v′2]. Note that C is unitary
since c? is orthogonal to v′2. Accordingly, we only use the CSI
under c?, i.e., the first column of HS,B(C, t), for sensing.

D. User Selection

Sensing applications, such as gesture recognition, have CSI
sampling rate requirements to avoid the missing of the key
sensing information. However, only sniffing communication
packets transmitted from the AP to one user may not be
enough for supporting sensing applications since the packet
arrival rate of one user may be lower than the requirement
of CSI sampling rate. To address this issue, we can sniff
packets transmitted to all active users. Let λi denote the
communication packet arrival rate of the i-th user and λS

denote the required CSI sampling rate. We aim to pick enough

7Here, we focus on the single-antenna and two-antenna cases since they are
the most common configuration in practical. For other cases, the fractional
programming mentioned before can be easily applied.
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packets for sensing. Due to the different users’ locations, the
ISAC-oriented beamforming matrix designed in Sec. III-C is
not the same, leading to varied sensing SNRs. The sensing
SNR of the measured CSI at the sensing receiver is denoted
by ηS,?i when sniffing the communication packets of the i-
th user. To satisfy the two requirements of the sensing, i.e.,
high sensing SNR and enough CSI samples, we first need to
sort users by sensing SNR from highest to lowest. With the
newly defined index, we pick out users sequentially from 1
to I until the CSI sampling rate requirement is met or the
communications packets from all users have been utilized.
Here, we do not directly use all CSI samples for sensing
since a CSI with low sensing SNR may not be conducive
to improving sensing performance.

E. CSI Unifying

Although using the CSI measured from different users’
packets can ensure enough CSI samples, the sensing SNRs
of CSI samples are different, leading to a discontinuous CSI
variation. Let hS,B

i (t) denote the CSI measured from i-th
user’s packets under the designed beamforming feedback. As
shown in Figure 8a, the variations of hS,B

1 (t) and hS,B
2 (t)

are different, reflected in the average and deviation. The
former is related to the LOS path and other NLOS paths
and the beamforming matrix, and the latter is caused by the
different beamforming matrices across different users. When
the CSI samples measured from two different users’ packets
are directly combined in chronological order, the mixed CSI
amplitude is presented in Figure 8b after normalization. We
can observe that the mixed CSI in Figure 8b varies frequently
within the first second but the CSI measured from only one
user in Figure 8a remains almost unchanged. Consequently,
directly combining CSI samples from different users would
lead to the wrong sensing result.

To address the above-mentioned problem, we propose a
CSI unifying method. First of all, we aim to eliminate the
difference in average by removing the LOS path and other
NLOS paths from the measured CSI. Since they are static,
we can calculate the mean value over time and subsequently
subtract this mean from hS,B

i (t) packet, as

h̄S,B
i (t) = hS,B

i (t)−Mean
over t

{hS,B
i (t)}. (16)
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Fig. 9: VersaBeam implementation: (a) hardware configura-
tions and (b) experiment layout in a conference area.

h̄S,B
i (t) is equivalent to gS,D(t)aS,R(aS,T)Hc?i when we

ignore noise according to the expression of HS,B(C, t). Thus,
the difference in deviation is caused by the product of c?i
and aS,T. Fortunately, since both c?i and aS,T are known
at VersaBeam, the difference in deviation can be directly
eliminated by

ĝS,D
i (t) = h̄S,B

i (t)/
(
(aS,T)Hc?i

)
. (17)

ĝS,D
i (t) from all selected users can be combined into one CSI

sequence in chronological order. Since the CSI samples are
measured from communications packets, they are not evenly
distributed over time, and we apply the fitting-resampling
method to maintain the uniformity of CSI required by most of
sensing applications. Furthermore, we further apply the low-
pass filter and normalization on the CSI sequence to suppress
the noise. The filtered signal is presented in Figure 8c, and we
can observe that it has a similar variation trace as hS,B

i , which
proves the effectiveness of the proposed unifying method.
Moreover, the filtered signals over different receiving antennas
and subcarriers are input into the deep neural model for gesture
recognition.

IV. IMPLEMENTATION

In this section, we elaborate on the implementation of
VersaBeam, as well as introduce the experiment setup.

Implementation: We use a mini PC with an R7-7840H
AMD CPU and 16 GB RAM and two Wi-Fi NICs
(Alfa AWUS036ACM [29] and Intel AX200 [30]) to form
VersaBeam, as shown in Figure 9a. Both NICs work in monitor
mode. Intel AX200 is used for measuring CSI from the re-
ceived packets with PicoScenes [31], acting as the sensing re-
ceiver. To control the beamforming behavior of the Wi-Fi AP,
we adopt the beamforming feedback forgery method proposed
in [19]. Specifically, we first sniff the genuine beamforming
feedback using Alfa AWUS036ACM with libpcap 1.10.3, then
construct ISAC-oriented beamforming feedback following the
method proposed in Section III-C using the mini PC with
Eigen 3.3.7, and the constructed feedback is injected into the
Wi-Fi systems using Alfa AWUS036ACM with libpcap 1.10.3.
Moreover, the mini PC is also used for performing the beacon-
based detection with Python and realizing gesture recognition
with Python. Specifically, we adopt the ResNet as the neural
network for gesture recognition and it is built upon PyTorch.
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Fig. 10: The (a) communication and (b) sensing performance
comparison with the single-antenna communication user and
two-antenna communication user.

Experiment Setup: We first conduct micro-benchmark exper-
iments in terms of the sensing performance (i.e., sensing SNR)
and communication performance (i.e., throughput) in a video
conference room and then conduct a real-world experiment
of gesture recognition in three different environments, i.e., a
conference room, an office room, and a dance room. Due to the
page limit, we mainly introduce the setup in the conference
room, with the other two rooms having similar setups. The
layout of the conference room is shown in Figure 9b. The
AP is Xiaomi Redmi Router AC2100 [32] with four antennas
and operates at 5 GHz with 20 MHz bandwidth under the Wi-
Fi 5 standard. There are four communication users randomly
located in the room and the types of communication users
include Realtek RTL8821CU with one antenna and Realtek
RTL8812BU with two antennas. Iperf3 [33] is adopted for
measuring the throughput between the AP and users. To show
the average performance, the total test time for throughput
is more than 8 hours. Meanwhile, 8 individuals are invited to
perform six different gestures, namely circle, front-back, slide,
star, wave, and zig-zag. The overall number of collected CSI
samples in the conference room is 8,700.

To show the superiority of the proposal, we consider two
baselines: one is the scheme without beamforming (BF),
and the other is the scheme with communication-oriented
beamforming, i.e., SenCom [17].

V. EVALUATIONS

We first present the experiment results focusing on through-
put and sensing SNR, followed by real-world experiment
results of gesture recognition to further verify the sensing
performance of VersaBeam.

A. Communication and Sensing Performance

First, we present the communication and sensing per-
formance with the single-antenna communication user and
two-antenna communication user, as shown in Figure 10.
Regarding the communication performance, compared to
communication-oriented beamforming, the throughput loss
with proposed beamforming is 4.1 % for the two-antenna user
and almost 0 % for the one-antenna user, verifying the low
impact on communication. The loss is caused by the inaccurate
estimation of communication SNR and channel variation, and
the estimation error and variation increase with the number of
antennas. Thus, the throughput loss for the two-antenna user
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Fig. 11: The comparison of sensing SNR under different (a)
subcarriers and (b) gestures.
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Fig. 12: The impact of location on (a) communication perfor-
mance and (b) sensing performance.

is higher than that for the one-antenna user. Moreover, the
throughput achieved by the proposal is higher than that without
beamforming. For the sensing performance, the proposed
ISAC beamforming achieves the highest sensing SNR among
the three schemes, further demonstrating the superiority of the
proposed ISAC-oriented beamforming. The sensing SNR of
the two-antenna user is higher than that of the single-antenna
user. This can be explained as follows: the beamforming
feedback is a matrix for a two-antenna communication user
and a vector for a one-antenna communication user. Thus,
with more antennas of the communication user, there are more
degrees of spatial freedom for designing the beamforming
feedback, which is beneficial for achieving higher sensing
SNR. Additionally, the sensing SNR using the communication-
oriented beamforming is lower than that without beamforming,
highlighting the limitation of SenCom.

To fully explore the sensing performance of the proposed
ISAC-oriented beamforming, we also plot the sensing SNRs
over the 57 subcarriers (including all subcarriers available
for sensing with bandwidth being 20 MHz) and 6 gestures
in Figure 11. Although the sensing SNR varies with the
subcarrier for the three schemes due to the multipath effect,
the sensing SNR of the proposed remains the highest one
since our proposed method designs the beamforming feedback
for each subcarrier. Notably, the overall computation latency,
including decompression, feedback matrix construction, and
compression, is less than 1 ms, allowing real-time control of
the AP’s beamforming behavior. This latency could be further
reduced via parallel computing. Meanwhile, the sensing SNR
of the proposed ISAC-oriented beamforming is higher than
the other two schemes across different gestures, verifying the
universality of VersaBeam. This is because VersaBeam in-
creases the transmit power towards the sensing target, making
the variation of the sensing target more pronounced.
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Fig. 13: The accuracy of the gesture recognition in three
different environments.

Due to that the proposed ISAC-oriented beamforming
jointly considers directions of communication and sensing,
i.e., V and aS,T, the relative location between the sensing
receiver and the communication user would influence the
performance. To explore the impact, we vary the location
of the communication user while fixing the location of the
sensing receiver, and the result is shown in Figure 12. Note
that the correlation between V and aS,T for four locations is
0.36, 0.43, 0.46, and 0.64, respectively. For the throughput in
Figure 12a, it can be seen that the throughput of the ISAC-
oriented beamforming approaches that of the communication-
oriented beamforming under different locations. For the sens-
ing SNR in Figure 12b, the ISAC-oriented beamforming
achieves the highest sensing SNR. The sensing SNRs of both
the ISAC-oriented and communication-oriented beamforming
increase with the correlation. This result arises because the
high correlation means a similar beamforming direction for
the communication and sensing, and the transmit power used
for sensing the target increases with correlation. These findings
indicate that VersaBeam can realize high sensing performance
with only low loss of communication performance.

B. Gesture Recognition

To verify the effectiveness of the proposed user selection
strategy and CSI unifying method, we add two baselines: one
is the scheme without user selection strategy, which randomly
selects communication users for reusing, and the other is
the scheme without CSI unifying, where the CSI samples
measured from different users’ packets are directly combined
as introduced in Section III-E.

The accuracy of the gesture recognition in conference room,
office room, and dance room is illustrated in Figure 13.
The accuracy of VersaBeam is the highest among the three
schemes. Specifically, the sensing SNR realized by VersaBeam
is higher than these of the schemes without beamforming and
with communication-oriented beamforming according to the
experiment results in Section V-A and is also higher than
the scheme without user selection since the packets with
high sensing SNR are selected. Consequently, the accuracy
of VersaBeam is higher as the high sensing SNR is beneficial
to help the neural network extract features of each gesture and
recognize different gestures. Moreover, without unifying CSI
from different users’ packets, the variation of the CSI over
time caused by the gesture may be covered by the variation
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Fig. 14: The accuracy of the gesture recognition with different
numbers of antennas, where (a, b) means that there are a (b)
antennas at the communication (sensing) user.

caused by the different beamforming matrices for different
users, and thus, the accuracy of this scheme is lower than
that of VersaBeam. Besides, the results in three environments
verify that VersaBeam can achieve outstanding performance
in all scenarios.

To explore the influence of antennas’ number at the com-
munication user and sensing receiver, the accuracy under
different antenna settings is plotted in Figure 14. It can be
seen that the accuracy increases with the number of antennas
at the communication user. The reason is that the antenna’s
number of the communication user determines the degrees
of spatial freedom for designing the beamforming feedback,
and the sensing SNR can be higher with more degrees of
spatial freedom. Meanwhile, the accuracy is positively related
to the number of antennas at the sensing receiver. With more
antennas at the sensing receiver, spatial resolution of the
receiver can be improved and more sensing information can
be provided, beneficial for extracting features of different ges-
tures. Moreover, even with one antenna at the communication
user and sensing receiver, VersaBeam still can achieve high
accuracy, further demonstrating the superiority of VersaBeam.

VI. RELATED WORKS

Our work is closely related to Wi-Fi sensing and beamform-
ing design.

Wi-Fi sensing: Commodity Wi-Fi devices have been widely
used to realize contactless human sensing due to their non-
intrusive, device-free, light-needless, and pervasive advan-
tages. The applications of Wi-Fi sensing including localiza-
tion [14], [34], activity recognition [5], [35], person identi-
fication [36], [37], vital signs monitoring [38], and so on.
To ensure high sensing performance, those works generally
employ the transmitter to send exclusive sensing packets (that
do not carry information) without beamforming, and the CSI
extracted from these packets at the receiver with the help of
CSI tools [9], [31], [39] is used for completing specific sensing
task. Due to the usage of the exclusive sensing packets, the
communication and sensing in the Wi-Fi system are realized
via a time-division method, being low efficiency. To improve
the efficiency, one solution is to extract CSI from communica-
tion packets (may transmitted via beamforming) without extra
overhead for sensing. To avoid the impact of communication-
oriented beamforming, [13], [40], [41] utilize the beamforming
feedback information (BFI) transmitted in clear text to perform

sensing instead of CSI. However, the sampling rate of BFI
is 10∼20 Hz, which may not be enough for fine-granularity
sensing. To support fine-granularity sensing, SenCom [17]
proposes a signal processing method to weaken the effect
of communication-oriented beamforming. However, since the
noise and interference are mixed with the useful signal, the
signal processing method cannot fully eliminate the effect. To
solve this issue, we propose VersaBeam that utilizes active
ISAC-oriented beamforming for high-performance sensing and
communication over commodity Wi-Fi systems.

Beamforming design: Different from the traditional beam-
forming design in communication systems that only aims to
maximize the throughput of all active users, there are two ob-
jective functions, i.e., maximizing sensing and communication
performance, in the beamforming design towards ISAC [11],
[42]–[46]. For example, [42] uses signal-to-interference-plus-
noise ratio (SINR) as the metric for sensing performance and
maximizes it under the communication SINR requirement and
total energy limitation. On the contrary, [43] proposes a beam-
forming design algorithm to maximize the communication
SINR under the requirement of sensing SINR. Moreover, the
trade-off between sensing and communication performance via
weighting is studied in [44]. However, these works stay only
on emulation platforms with limited real-world applicability.
Worse, existing works do not consider the characteristic (i.e.,
the relationship between SNR and MCS) and requirement (i.e.,
beamforming matrix should be unitary one) of commodity Wi-
Fi devices, being impractical. To address those problems, we
propose VersaBeam that can directly be used in the existing
Wi-Fi system without modification to realize ISAC.

VII. CONCLUSION

In this paper, we have introduced VersaBeam to explore
the potential of the beamforming protocols to achieve high-
performance ISAC in practical Wi-Fi systems. VersaBeam
reuses the communication packets for sensing without over-
head. To address the low sensing SNR caused by the existing
communication-oriented beamforming, we propose an ISAC-
oriented beamforming design based on the mathematical anal-
ysis of the beamforming on sensing SNR. Considering the
different beamforming behaviors for different users, we also
propose a user selection strategy and a CSI unifying method
for improving sensing SNR of measured CSI and further
eliminating the difference in CSI caused by different beam-
forming behaviors. The extensive evaluations with commodity
Wi-Fi devices have evidently demonstrated that VersaBeam
can realize high-performance sensing with minimal impact on
communication performance.
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