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Abstract—Behavior recognition plays an essential role in numerous behavior-driven applications (e.g., virtual reality and smart home)
and even in the security-critical applications (e.g., security surveillance and elder healthcare). Recently, WiFi-based behavior
recognition (WBR) technique stands out among many behavior recognition techniques due to its advantages of being non-intrusive,
device-free, and ubiquitous. However, existing WBR research mainly focuses on improving the recognition precision, while rarely
studying the security aspects. In this paper, we reveal that WBR systems are vulnerable to manipulating physical signals. For instance,
our observation shows that WiFi signals can be changed by jamming signals. By exploiting the vulnerability, we propose two
approaches to generate physically online adversarial samples to perform untargeted attack and targeted attack, respectively. The
effectiveness of these attacks are extensively evaluated over four real-world WBR systems. The experiment results show that our
attack approaches can achieve 80% and 60% success rates for untargeted attack and targeted attack in physical world, respectively.
We also show that our attack approaches can be generalized to other WiFi-based sensing applications, such as user authentication.

Index Terms—Behavior recognition, WiFi, Genetic algorithm, Adversarial sample.

1 INTRODUCTION

EHAVIOR recognition is a key enabler for a wide
B range of essential human-centric applications (e.g., vir-
tual/augmented reality and smart home) and even the
safety-critical applications (e.g., healthcare and security
surveillance). Traditional approaches utilize cameras [1], [2],
[3], sonar [4], [5], [6], or wearable devices [7], [8] to capture
behavior information, including gesture, activity, and the
like. However, these approaches have their respective draw-
backs, including the risk of visual privacy leakage, limited
sensing range, and inconvenience inherent in using on-body
sensor. Compared to these methods, WiFi-based solutions
stand out by the advantages of being non-intrusive, contact-
less, device-free, and ubiquitous [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20].

Existing WiFi-based behavior recognition systems ex-
tract behavior-relevant features from WiFi signals by mea-
suring signals’ channel state information (CSI). Previous
studies of CSI-based behavior recognition system (termed as
CBRS) focus on either improving the recognition accuracy or
enabling the CBRS’s environment-adaption ability [11], [18],
while lacking the comprehensive exploration for its security
issues. In fact, the security problem of CBRS is of essence,
because the recognition results are frequently related to the
vital interests (e.g., economic interest and life safety) of CBRS
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users. For instance, an adversary could manipulate certain
wireless signals to mislead the decision of a fall detection
system, threatening users’ life safety. Even worse, in a smart
home application, if an activity associated with turning the
light on is falsely recognized as the activity of turning the
gas on or opening the door, the user’s life or property safety
would be directly threatened.

Current CBRSes dominantly leverage machine learning-
based methods for behavior recognition, but the emergence
of adversarial samples severely threat the security of ma-
chine learning classifiers [21]. Thus, a natural concern arises:
Are these CBRSes vulnerable to practically physical adversarial
samples? If so, to what extent? Huang et al. [22] demonstrate
that delicate cross-technology interference (CTI) could mis-
lead the target CBRS to make wrong decision (i.e., untar-
geted attack). However, they have not thoroughly explored
the security risks in CBRS. In this paper, we also study the
security issue of CBRSes under adversarial environments by
designing physical online attacks. But we try to explore the
possibility of causing more tremendous consequences (i.e.,
both untargeted and targeted attacks) via simple and effec-
tive ways instead of CTI. For doing so, we first probe the
feasibility of manipulating the input CSI samples of CBRSes
in the real world. We find that jamming signal could induce
CSI absence in normal CSI samples due to the regulation
of the CSMA/CA protocol [23]. The CSMA/CA protocol
is adopted by network interface cards (NICs) in CBRSes
and NICs control the transmission of signals. Therefore, it
is possible to perform effective attacks by emitting jam-
ming signals (standards-compliant WiFi signals) towards
the transmitter of the CBRS.

Although it is feasible to manipulate the input CSI, to
achieve effective attacks is still difficult due to the following
challenges: 1) Stealthiness: The attack should maintain the
property of stealthiness so that the attack could not be easily



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Untargeted Over-The-Air

Jamming Signal Transmission
- - ® - L Behavior Classifier .
e
AOR EorRG.
e
+ A\ N \ " — ‘(/ —>  Unknown Behavior
Adversarial CSI Sample "/p
A1)/
Normal CSI Sample @ ‘."
CAAN A il () = i

4

r

—

Adversarial CSI Sample

a.
o - W o 111 i
Targeted Over-The-Air Specified by Attacker T

Jamming Signal Transmission

Fig. 1. Consequences of untargeted attack and targeted attack.

detected by the CBRS user; 2) Disdifferentiability: Existing
targeted attack methods mainly rely on adding perturba-
tions to normal samples. The process of the perturbation
optimization is differentiable. However, jamming signal
changes the CSI in CBRS by causing CSI absence instead of
adding perturbation, and this process is non-differentiable;
3) Robustness: To launch effective targeted attacks, the at-
tacker should immediately emit jamming signals as long
as the user starts to perform a behavior; otherwise, the
attack will not jam the specified position in the normal CSI
sample, resulting in the degradation of the attack effective-
ness. Nevertheless, it is difficult to synchronize the jamming
signal in the physical world. Besides, the CSI sample of
a specific behavior is not unique. Therefore, the jamming
signal designed for a known CSI sample may be ineffective
to the one collected during online attack.

By overcoming the above challenges, we propose two
approaches to launch physical-world untargeted and tar-
geted attacks against CBRSes, respectively. As shown in
Fig. 1, the untargeted attack can lead the CBRS to recognize
a behavior demonstrated by the user (‘fall’) as an unkown
wrong one (‘walk’, ‘run’, or ‘sit down’). The targeted attack
can make the CBRS recognize the behavior (‘fall”) performed
by the user as the one specified by the attacker (‘sit down’).

In detail, in order to overcome the first challenge, as
our method exploits the CSI absence, we need to explore
if the CSI absence also occurs in normal CSI samples. To
this end, we first collect a large number of normal CSI
samples and perform statistical analysis over them. We find
that CSI absence exists in some normal CSI samples as well.
In this case, as long as the degree of the CSI absence (i.e.,
the number of absence times and the time length of each
absence) caused by jamming signals is similar to that in
normal CSI samples, the stealthiness of the attack can be
guaranteed. Based on the result of this statistical analysis,
we design untargeted and targeted attack approaches, in
which we control the number of jamming times and the time
length of each jamming to ensure sufficient stealthiness.

To address the second challenge, we first design an en-
coding scheme to encode jamming signals as bit sequences.
With this scheme, we can leverage the genetic algorithm [24]
consisting of three manipulation operations (duplication,
crossover, and mutation) to optimize the jamming signal to
generate targeted adversarial samples. As this optimization
method does not require the differentiability, we can address
the second challenge fundamentally.

To deal with the synchronization problem in the last
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challenge, we take the effect of the delay into account
during optimization. We simulate the effect of delay by
extending the fitness function in the genetic algorithm to
a weight-based one. Moreover, to suppress the impact of
the diversity of CSI samples, we introduce multiple CSI
samples for each behavior when calculating the fitness score.
Such countermeasure can help bit sequences improve their
adaption abilities to the differences among different CSI
samples.

In the evaluation part, we conduct comprehensive ex-
periments on four CBRSes in real environments to study
the effectiveness of our attack approaches. 17 volunteers are
invited to collect both normal CSI samples and adversarial
ones. The experiment results show that an attacker is able
to achieve over 80% success rates in untargeted attacks.
The success rate for targeted attack can reach 60%. The
studies under harsh environments demonstrate that our
attack approaches are still effective under non-light-of-sight
(NLOS), occluded, and black-box attack scenarios.

In summary, our contributions are as follows:

o We study the security issues of existing CBRSes in the
physical world. To our best knowledge, we are the first
to achieve both untargeted attack and targeted attack in
CBRSes physically.

e We conduct comprehensive evaluation over four
CBRSes. The results demonstrate that an attacker can
achieve over 80% and 60% success rates on untargeted
and targeted attacks, respectively.

o We show that our attack approaches can be easily gen-
eralized to other WiFi-based sensing applications, such
as user authentication. Moreover, We propose three
ways to mitigate the harmfulness of the attacks.

2 BACKGROUND AND ATTACK FEASIBILITY

We start this section by introducing some background
knowledge on our attack target, i.e., CBRS. Then, we de-
scribe the CSMA /CA protocol adopted by WiFi NICs for
collision avoidance. The feature of this protocol enables us
to change normal CSI in CBRS. Next, we formulate the
adversarial environments in CBRSes. At last, we present the
threat model.

2.1 CSl-based Behavior Recognition

A CBRS usually contains two modules, i.e., CSI acquisition
and learning-based behavior classification [10]. Below, we
introduce each module elaborately.

CSI acquisition: In a CBRS, users obtain behavior infor-
mation by measuring CSI from WiFi signals. Since CSI
describes how the signal experiences power attenuation
and phase shift caused by human behavior, it can record
abundant behavior information. Taking a CBRS with a trans-
mitter and a receiver as an example, the transmitted signal
Sty is reflected/absorbed by human body and becomes s,
at the receiver end. Then, the CSI H is estimated using
known s;; and s,;. Since CBRS transmits signals with a
unit of packet and a behavior usually takes a period of time,
a behavior is recorded by a CSI sample containing the CSI of
all packets transmitted during this period [25]. Therefore, a
CSI sample has t rows and f columns of CSI values, where
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t is the number of packets and f is the number of used
frequency. The CSI sample will be further processed in the
next module.

Learning-based behavior classification: This module oper-
ates in two steps: feature extraction and behavior classification.
In feature extraction, the CSI sample H extracted from the
prior module first goes through some preprocesses (e.g.,
low-pass filtering and interpolation [17], [19]). Then, an
extraction method is applied to the preprocessed H to
get a feature vector x. Without loss of generality, we use
fewt() to represent the whole feature extraction process:
T = fext(H). In the second step, a machine learning clas-
sifier F,(-) parameterized by w is built to map the feature
vector x to the probabilities of a set of labels. Each label
corresponds to a category of behavior. The label that has
the largest probability is the prediction result of F,(-):
y = Fy(fex(H)) = Fy(x), where y is the predicted
behavior label of x. To train the classifier, a batch of labeled
CSI samples (i.e., training set) is collected and the prediction
error rate between the prediction label and ground-truth
label is minimized. Once being well trained, the classifier
can be used to predict the labels of unseen CSI samples,
achieving the goal of behavior recognition.

2.2 CSMA/CA Protocol and CSI Absence

CSMA/CA protocol: NICs conform to the IEEE 802.11
a/b/g/n/ac/ax communication standard [26]. In these
standards, CSMA/CA protocol is adopted to avoid col-
lisions among signals at the same transmission channel
but from different transmitters (each region in the world
is allowed to use a specific number of channels [27] and
each channel has f frequency). There are two main anti-
collision mechanisms used by CSMA/CA protocol: carrier
sensing and collision avoidance. In a WiFi signal transmission
task, the carrier sensing mechanism works at first. It lets the
transmitter listen to the shared medium (e.g., WiFi signals in
the wireless network) to determine whether another trans-
mitter is transmitting signals at the same channel or not.
If the transmitter detects that the signal power of the same
channel in the shared medium is larger than a threshold, the
collision avoidance mechanism will stop the transmitter trans-
mitting packets and wait for a period of time. After that,
the transmitter will repeat the “carrier sensing”-“collision
avoidance” loop until the shared medium is detected clear,
i.e., the sensed power of the signal at the same channel is
smaller than the threshold. In the transmission process, the
carrier sensing mechanism keeps working to guarantee that
the transmitter stops transmitting once collision occurs in
the shared medium.

CSI absence: As mentioned in Section 2.1, each CSI sample
is composed of CSI values of multiple packets over a period
of time. In a CBRS, the time interval between any two
consecutive packets approximates a constant value, i.e., the
transmitter sends packets at equal time intervals. In this
way, each CSI sample can stably record the information
of behavior. Suppose that the 4, transmission channel is
used, the transmission rate is 100 packets per second, and
each behavior continues for two seconds, then each CSI
sample H should have dimensionality of (¢, f). Ideally, ¢
equals to 200 (100 packets/s x 2s). However, once we use
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another transmitter (attacker) to continuously emit signals
(termed as jamming signals) at the 4;, channel towards the
CBRS’s transmitter (victim), the aforementioned CSMA /CA
protocol will stop the transmission of the victim transmitter.
The victim transmitter will wait until the attacker transmit-
ter stops the jamming. In this case, ¢ < 200. That is, the
number of rows in attacked CSI sample H’ is less than 200,
which means that some rows of the normal CSI sample are
absent. This CSI absence caused by jamming signals makes
the attack feasible as it manipulates H to H' (H' # H). In
the remainder of this paper, the jamming signal is denoted
by s;. The impact of the jamming signal to H is denoted as
J(-) and we have H' = J(H, s;).

2.3 Behavior Recognition in Adversarial Environments

Given a classifier Fy,(-), a feature vector x and its label y,
an adversarial attacker launches an attack by generating
an adversarial sample 2/, so that Fy,(z') # y (untargeted
attack) or F,(z') = ' (targeted attack), in which ¢ is a
targeted label. Prior works [21], [28] have shown that the
targeted attack can be achieved by generating an adversarial
perturbation by optimizing the following objective function:

min

llz —2'||p, st Fy(@)=y andz’ € X, (1)

where Fy, (') = y' is the attack goal and 2’ € X means
that the generated adversarial sample z’ is in a valid set.
Then, an optimization algorithm is leveraged to generate
the perturbation. In a CBRS, the adversarial perturbation is
indeed the jamming signal s;. The objective function can be
re-written as follows:

min errt(H)_femt(J(Hvsj))H7 (2a)
st. Fu(fext(J(H,s;))) =y and J(H,s;) € X.(2b)

In our attack scenario, as the jamming effect J(H, s;) is non-
differentiable, we leverage the genetic algorithm to achieve
the optimization objective.

2.4 Threat Model

Untargeted threat model: Untargeted attack attempts to fool
the CBRS to output a false behavior label, which is not
the one that the user demonstrated. In this threat model,
the attacker does not need to have any prior knowledge
about the CBRS. This model minimizes the constraints on
the attacker.

Targeted threat model: Targeted attack aims to mislead
the CBRS to output a behavior label that is specified by
the attacker. For the targeted attack, we have the following
assumptions: 1) The attacker can detect when the CBRS user
starts to perform an activity. This can be achieved by using
WiFi-based behavior detection methods [29]. Under this
assumption, the attacker can immediately launch attacking
signals once the victim demonstrates an activity. 2) We as-
sume the targeted attack as a grey-box one, i.e., the attacker
only knows the architecture of the target behavior classifier.
This is very nature as the classifier details are public in the
existing literature on CBRS [15], [16], [17], [18], [19], [20].
Note that the attacker does not need to know the specific
parameters of the target classifier.
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Threat scenario. Both untargeted and targeted attacks can be
launched in any scenario the target CBRS is deployed in.
Particularly, to achieve the most effective targeted attack,
the attacker is required to simulate the context (includ-
ing the surrounding environment and the placement of
transceivers) of the target CBRS. Such a context can be easily
known when the CBRS is a public application, e.g., patient
monitoring in hospitals and elderly monitoring in nursing
homes. For some private places like personal residence, the
context could also be observed through windows [30]. Since
our attack approaches can be realized in both public and
private places, they pose real threats to existing CBRSes.

3 ATTACK PREPARATION

Performing attacks against a CBRS should simultaneously
meet the following four requirements. 1) Attacker Trans-
mitter Selection: the adversary transmitter should be able
to cover all WiFi transmission channels. 2) Target Channel
Determination: the attacker knows the WiFi transmission
channel (target channel) used by the CBRS. 3) Attack Power
Estimation: The power of the jamming signal should be
large enough to stop the victim transmitter’s transmission.
4) Stealthiness: The attack should not be easily detected, i.e.,
the jamming signal should have stealthiness. In the follow-
ing, we first explain the reasons why the above requirements
are necessary. Then, we introduce our designs to enable the
attacker to meet these requirements.

3.1 Attacker Transmitter Selection

Since a CBRS can use any permitted WiFi channel to trans-
mit signals, the attacker transmitter should be able to cover
all permitted WiFi channels. To meet this requirement, we
opt to use NICs or software defined radios (SDRs), e.g.,
USRP. These two kinds of devices can emit jamming signals
at the target channel, yet have different performance in
respect to different aspects. In terms of the expense, SDRs
are more expensive than NICs. For example, an USRP
costs about 773 dollars yet a NIC normally costs about 20
dollars. For the propagation distance of emitted jamming
signals, SDRs usually perform better because their upmost
transmission power is higher than that of NICs. Thus, SDRs
can attack CBRSes within a larger range, although SDRs are
more costly than NICs. The attacker needs to make a trade-
off between the attack range and cost.

3.2 Target Channel Determination

To jam the legitimate signal in a CBRS, the attacker needs
to determine the channel used by the victim transmitter, i.e.,
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knowing the channel index (each permitted channel has a
unique index). Intuitively, we can employ a NIC or SDR to
collect signals around the CBRS to detect the channel index.
However, there are many transmission channels used for
daily communications in the ambient environments. As a
result, the target channel might be overwhelmed by other ir-
relevant transmission channels, which confuses the attacker.
Fortunately, to identify the target channel, the attacker can
utilize the time interval between any two continuous pack-
ets to distinguish the target channel from other irrelevant
ones. This is because such time intervals are stable in a
CBRS but generally unstable in a communication system. To
validate the feasibility of the above countermeasure, we first
collect a batch of WiFi signals with different transmission
channels around a CBRS, and then calculate the time inter-
vals for each transmission channel. The box-plot of the time
interval distributions are shown in Fig. 2. It can be observed
that the time intervals of the target channel are significantly
stable (with small box and a few black circles), while those
of other transmission channels are unstable (with large box
and lots of black circles). Therefore, the attacker can easily
distinguish the target channel from other irrelevant ones
according to the time interval distribution.

3.3 Attack Power Estimation

To trigger desired CSI absence, the power of jamming sig-
nals should be larger than the collision avoidance threshold
of the victim transmitter when the jamming signals reach the
victim transmitter. Hence, the attacker needs to guarantee
that the power of jamming signals is still high enough after
experiencing decay during propagation. To estimate the
emitting power of jamming signals, two parameters should
be known in advance: the collision avoidance threshold and
the distance between the attacker transmitter and the victim
transmitter. Fortunately, the threshold is fixed as -62 dBm
according to the IEEE 802.11 standard [23]. The distance can
be easily measured, e.g., via a telemeter. Then, according to
[31], the attacker can estimate the emitting power using the
following power decay formula:

Lg =923+ 20log(d) + 201og(f), 3)

where Ly, d, and f are the power decay, distance, and the
frequency, respectively. In physical-world attack, in consid-
eration of the extra power decay caused by occlusion (e.g.,
wall), multi-path effect, and antenna gain, we add 3dB to
the estimated power empirically. The real emitting power
should be equal to or larger than the estimated power.
Recalling that an attacker can use both NICs and SDRs to
emit jamming signals, the largest attack distance can be
estimated based on Eq. 3. Since the largest transmission
power of NICs and SDRs are 18 dBm [32] and 20 dBm [33]
respectively, the largest attack range of them are 43.3 meters
and 54.6 meters respectively, without regard of other power
decay excluding L.

3.4 Stealthiness of Attack

In order to launch attacks stealthily, a sophisticated attacker
should make the jamming signal effectively concealed, i.e.,
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the adversarial CSI samples should be difficult to distin-
guish from normal ones. To this end, we conduct a pre-
liminary experiment to explore the feasibility of satisfy-
ing the stealthiness. To be specific, we first collect over
2000 normal CSI samples in a normal laboratory envi-
ronment from six reproduced CBRSes [9], [10], [11], [12],
[13], [14]. Then, we calculate the time intervals in each
CSI samples. The experimental result shows that the CSI
absence appears in over 50% normal CSI samples. The
reasons causing this phenomenon are threefold: 1) The
reflection/absorption/occlusion of human body may hinder
the signal propagation, resulting in the CSI absence in the
received signals. This kind of CSI absence is also a kind of
feature of user behavior, because different behaviors cause
different reflection/absorption/occlusion. 2) There are mas-
sive WiHi signals in the ambient environments. Some of
them may be at the target channel, leading to the CSI
absence in normal CSI samples. 3) With the hardware im-
perfection of the transmitter/receiver, some packets may not
be successfully transmitted/received, which also induces
CSI absence. Therefore, it is difficult for the CBRS to judge
whether a CSI absence is induced by malicious jamming
signals or other natural factors.

Afterwards, we count the number of CSI absences in
every one-second in each CSI sample and show the his-
togram in Fig. 3. It can be found that the most frequency
of CSI absence is smaller than 8. Besides, we find that most
time intervals of CSI absences are less than 80 milliseconds.
Therefore, similar to the X in Eq. 2, we define the valid set.
In the valid set, each CSI sample contains no more than Ny,
CSI absences per second, and the time length of the longest
CSI absence in this sample is less than 7,5 milliseconds.
By default, we set Ngps and Typs as 8 and 80, respectively.
Accordingly, to guarantee the stealthiness, the number of
jamming attempts per second and each jamming duration
should be smaller than N5 and T, milliseconds, respec-
tively. In this way, the generated adversarial CSI sample will
fall into the valid set with a high probability, and hence be
indistinguishable from normal CSI samples.

4 ATTACK APPROACHES

In this section, we detail the untargeted and targeted attack
approaches.

4.1 Untargeted Attack

Unlike [22] that crafts attacking signals with expert knowl-
edge on CTI, we aim to achieve imperceptible attacks while
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minimizing the requirements for attack. Thus, we opt to gen-
erate random jamming signals for untargeted attack. In
this way, the attacker does not need to have any expert
knowledge and the victim cannot find the attack pattern.
Based on the analysis in Section 3.4, we summarize the
untargeted jamming signal generation flow to the following
steps:

1) Dividing one second into N,;s segments in the tempo-
ral domain. Each segment is 1000/ N5 milliseconds.

2) Randomly generating N,;s jamming start time points
(from ¢! to tNav<) for N5 segments, the jamming signal
will be emitted since the start time point.

3) Randomly generating N, jamming time lengths (from
li to lév avs) for Ngps segments, with each time length
less than or equals to T;;s milliseconds.

4) In one second, the jamming signal is emitted at ¢! for /%
milliseconds (i € [1, Ngps))-

A generation flow of the untargeted jamming signal is illus-
trated in Fig. 4. In this example, N5 = 5 and T},ps = 30. To
continuously launch online untargeted attacks at time ¢4,
the attacker only needs to repeat the last three steps since
tatt.

The essential goal of the above flow is jamming the
target channel stealthily. To validate the stealthiness, we
invite volunteers to repeat three activities (‘walk’, ‘sit’, and
‘fall’) introduced in [12] and perform untargeted attack.
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Meanwhile, we collect untargeted adversarial CSI samples
(i.e., the signal samples that under untargeted attacks). Then
we show the time interval distributions of the adversarial
CSI samples in Fig. 5. It can be observed that the majority
of adversarial CSI samples lie in the valid set. Moreover, we
found that the waveform of normal CSI sample (Fig. 6(a))
is similar to that of the adversarial one (Fig. 6(b)). Thus, the
proposed untargeted attack conceals itself well.

Finally, we validate the attack effectiveness of our ap-
proach. In order to visually observe the attack effectiveness,
we utilize the t-SNE [34] algorithm to reduce the dimen-
sion of statistical features of both normal and attacked CSI
samples, and show the result in Fig. 7. It can be found that
the normal CSI samples of different activities (marked by
different colors) are separated far away from each other,
while that of the same activity are close to each other.
More importantly, the attacked CSI samples of different
activities are almost mixed together. For the ‘walk” activity,
the attacked CSI samples (marked by red stars) are distant
from the normal ones of ‘walk’ yet close to the normal
CSI samples of ‘sit down’. In this case, a classifier trained
with normal CSI samples would misclassify the attacked
CSI samples. Therefore, our untargeted attack approach is
simple but effective. This is reasonable because the loss of
image pixels can also achieve high attack effectiveness even
under black-box conditions in computer vision field [35].

4.2 Targeted Attack

In this part, we describe the targeted attack approach, in
which an attacker can manually design a jamming sig-
nal s‘}%b, such that a CSI sample H® of a specific be-
havior y, can be classified as a target behavior y, ie.,

Y = Fw(femt(J(Haa Sgﬁb)))'

4.2.1 Methodology

To perform targeted attack, conventional approaches are
to randomly generate a perturbation, and then leverage
differentiable gradient descent to adjust its elements to
optimize the perturbation. The perturbation can be added
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Environment 2

to normal samples to generate adversarial ones [21], [28].
Nevertheless, these approaches cannot be used to generate
s?%b in our attack scenario, because what an attacker can do
is to cause CSI absence (i.e., element loss) of H¢, rather than
increasing/decreasing its element values. More importantly,
this process is non-differentiable.

To tackle this challenge, we opt to use the genetic algo-

rithm. The core components of the genetic algorithm are how
to calculate the fitness score, and how to encode and decode
the jamming signal. If the genetic algorithm is used in our
attack scenario, the attacker will generate better jamming
signals (the signal with higher fitness score) and encoding
them to feed into a fitness function (designed to calculate
fitness score), until reach the optimum. The optimum is such
a jamming signal that has the highest probability to mislead
the behavior classifier to output a behavior label specified
by the attacker.
Encoding scheme: To feed jamming signal into fitness
function to calculate fitness score, we propose an encod-
ing scheme for transforming the jamming signal s?%b. We
observed that each element in H® is only in one of the
two states, i.e., either ‘absent’ or ‘captured’ during attack.
In this case, the state of each element can be encoded as ‘0’
(absent) or “1” (captured). Hence, the jamming signal can be
represented by a bit sequence.

Suppose that the transmission rate of the victim trans-
mitter is n,, packets per second and each behavior exists one
second, each normal CSI sample would have n, elements
for each frequency. Moreover, since once a packet is not
captured, the elements of all frequency corresponding to
this packet would be absent simultaneously. Without loss of
generality, we assume that only one frequency is used by the
victim transmitter to ease our following explanation. Under
the above assumptions, the jamming signal can be encoded
as a bit sequence that contains n,, bits. As shown in Fig. 8(a),
a ‘0" in the bit sequence means the attacker transmitter emits
jamming signals (making the packet absent) and a ‘1" means
the attacker transmitter stops jamming (making the packet
captured). Accordingly, the jamming function J(-) can be
formulated as:

J(H?, s?ﬁb) =H%o s?ﬁb, 4)

where o is Bitwise AND operation [36].

Fitness score: In the genetic algorithm, each bit sequence is
assigned with a fitness score to measure how close it is to the
optimum. In our attack scenario, we regard the confidence
coefficient calculated by the behavior classifier F, () as the
fitness score, because such confidence coefficient measures
the probability that an input CSI sample should be classified
as a behavior label. Therefore, a larger confidence coefficient
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means a larger probability, i.e., a larger fitness score. The
fitness score " of 577" can be calculated by:

F* = Fit"(Fy(feat(H* 0 857°))) = Fit’(H*, s47°), (5)
where Fit’(F,(-)) is the fitness function and it outputs the
confidence coefficient of the behavior label y;, calculated by
the behavior classifier F,(+).

Nevertheless, in a realistic attack scenario, the attacker
has no access to the behavior classifier of the target CBRS,
not mention to the confidence coefficient. To solve this
problem, the attacker can simulate a CBRS context similar
to that of the target CBRS to collect CSI samples, on which a
surrogate behavior classifier can be trained to obtain confi-
dence coefficient. This is rational because the CSI samples
collected under similar contexts are similar as well. As
shown in Fig. 9, the CSI profile of ‘kicking’ collected in
laboratory (Environment 1) is similar to that collected in hall
(Environment 2). Thus, this countermeasure is reasonable.
Note that the attacker does not need to know the architec-
ture of the target behavior classifier. The experiment results
in Sec. 5.6 demonstrate that our attack approach has good
transferability.

4.2.2 Suppressing the Impact of Delay

So far, it seems that we can leverage the fitness function
Fit(-) to optimize s‘;_’b. However, certain delay exists in
real-world attacks, i.e., the normal CSI sample H® and
jamming signal s?”b are not synchronized. This is because
that even if the attacker instantly emits jamming signals
once detects the beginning of a behavior, the time point
that the jamming signals reach the victim transmitter would
lag behind the beginning time point of the behavior. The
lagging is induced by the propagation delay and hardware
delay. The delay would make the received CSI sample not
aligned with H% o 8?_>b, and deteriorate the attack effective-
ness.

To suppress the impact of delay, our solution is to
enhance the fitness function. Specifically, the attacker can
manually introduce a delay into the jamming signal during
the optimization. The purpose is to improve the tolerance
against the delay. As shown in Fig. 8(b), we deliberately
generate a delay of ng bits in a bit sequence through two
steps:

1) Adding ng ‘1" in the head of the bit sequence, so that
the new bit sequence contains ng + n,, bits.

2) Removing ng bits from the tail of the new bit sequence
and a delayed bit sequence with n, bits is finally
obtained.

If we denote the function of delaying s?_}b for ng bits as
D(s?%b, nq), Fp is enhanced to a weighted fitness function
as follow:

ng
F* = "w; - Fit"(H*, D(s57",4)), 6)
1=0

where w; € [0, 1] denotes the weight for the i-bit delayed bit
sequence and w; > w;1. Empirically, we set nq to 5.

o
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Fig. 10. Sum of the fitness scores of the generation increases as the
increase of the iteration. The deeper the color is, the larger the fitness
is.

4.2.3 Jamming Signal Optimization
a—b

With the fitness function, the optimal s577, ie, the opti-
mization objective (which is equivalent to the objective in
Eq. 2) can be formulated as:

nd
) a a—b
max > wi- Fit’(H*, D(s37°,1)), (7a)
°J =0
st J(H®s$7") e X, (7b)

Achieving this objective requires the following operations:

1) Initial generation: The attacker randomly generates [V,
bit sequences that are in the valid set as the initial
generation.

2) Fitness calculation: The attacker calculates the fitness
score of every bit sequence in the generation.

3) Duplication: The attacker sorts the bit sequences ac-
cording to their fitness scores. The top Ng,, bit se-
quences are duplicated and the Ng,,;, bit sequences with
lowest fitness scores are removed.

4) Crossover: N, pairs of bit sequences are randomly
selected from the generation to perform crossover. In
each pair of bit sequences, we exchange their last n..,
bits.

5) Mutation: The attacker first randomly selects N,,,,; bit
sequences, and then randomly selects 7, bits from
each of the Ny,,,; bit sequences. The Bitwise NEGATION
process [36] is then performed on these 1y, bits.

The first operation only needs to be performed once at
the beginning of the optimization, yet the following four
operations are alternately conducted in multiple iterations.
As shown in Fig. 10, a new generation will be produced
in each iteration, which would be better than the previous
generation. However, in practice, we find that a generation
might degrade, i.e., the sum of the fitness scores of current
generation is smaller than that of the former generation
after crossover and mutation. We term this phenomenon
as degeneration. To deal with this problem, we introduce
a mechanism that the crossover and mutation operations
will be re-conducted once degeneration occurs. Moreover,
in some generations the attacker might re-conduct the
crossover or mutation operation to guarantee that the bit
sequence is in the valid set. The iteration will not stop
unless the degeneration continuously occurs for N, times.
Empirically, N¢pq is set as 10. When the iteration terminates,
we regard the bit sequence that has the largest fitness score
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Fig. 11. Two normal CSI samples of ‘sit down’ with small differences in
red circles.

as the optimum and decode it to obtain the final s;_*b
The adversarial CSI sample generated by J(H®,s37?) is
most likely to be classified as behavior y;. Furthermore, the
attacker can use random offspring generation [37] to prevent
our approach from being trapped into local optimum. Or,
if our approach outputs a local optimum, the attacker can
further perform simulated annealing [38] to get the global
optimum.

4.2.4 Attack Robustness Enhancement

In real-world scenarios, the H for a specific behavior is
not unique. For example, two normal CSI samples of ‘sit
down’ are presented in Fig. 11. We find that although the
holistic profiles of the two curves are similar, their local
profiles are different. In this case, the sja_’b generated for
CSI sample H{ may be ineffective in attacking CSI sample
H3. To solve this practical problem, we further enhance
the fitness function and objective function. Specifically, an
attacker can first collect a batch of CSI samples containing
that of behavior y, to train the F,(-). Then, the attacker
can sum the fitness scores of all CSI samples of behavior y,
to improve the robustness of the generated jamming signal
827P. If we denote the number of the CSI samples of y,
in the batch as ny,;, the enhanced fitness function can be
formulated as:

MNbat MNd
Fo =33 w; - Fit' (HY, D(s97, 1)), st € [0,1].
j=11i=0
®)
The corresponding objective becomes:
Npat MNd
b(rra a—b
may 33w Fit'(HY, D(ST0), - Oa
j=11

st. w; €[0,1] and J(H®s$7") € X. (9b)
By using the batch and Eq. 8, the attacker can generate a
more robust 33-1_*" to attack both H{ and H3'.

5 EVALUATION AND RESULT

Existing CBRSes can be divided into two categories accord-
ing to whether the behavior classifier is based on deep
neural network or not. We select two representatives for
each category and conduct experiments over them: WiFall
[12], STFT [13], SignFi [11], and WiLSTM [9]. WiFall and
STFT use random forest (RF) [39] and logistic regression
(LR) [40] as behavior classifiers, respectively. The classifiers
in SignFi and WIiLSTM are most commonly used deep
neural networks, i.e., convolutional neural network (CNN)
and long-short term memory (LSTM). These four systems
can achieve high behavior recognition accuracy.

5.1 Experiment Setup and Metrics

Experiment setup: We reproduce four representative
CBRSes and ensure that our implementation has compa-
rable behavior recognition accuracy to the reference. The
implementation details are summarized as follows:

o In WiFall, six statistical features are calculated as the
input of the behavior classifier. WiFall leverages RF to
classify four activities including fall.

o Frequency domain features are extracted as the input of
classifiers in STFT. STFT can leverage LR to recognize
six activities ‘lie down, fall, walk, run, sit down, and
stand up’.

e Focusing on hand sign recognition, SignFi utilizes a
CNN to classify the features containing both CSI am-
plitude and phase. We reproduced SignFi to recognize
ten hand signs that represents ten numbers from zero
to nine.

o The WiLSTM system utilizes an LSTM classifier and CSI
amplitudes to recognize six activities similar to those in
STFT.

As illustrated in Fig. 12, we implement these systems
under three different environments, including laboratory,
home, and hall. The victim transmitter is equipped with an
Intel 5300 NIC and three antennas. The transmission rate
of the CBRSes is 100 packets per second and each behavior
lasts two seconds. For the attacker transmitters, we use both
NIC (Atheros 9380) and SDR (USRP B210) to emit jamming
signals. The jamming signals are modulated by LabVIEW
[41]. We invite 25 volunteers (18 males and 7 females) aged
from 21 to 29 to collect CSI samples. In each environment,
volunteers are asked to perform behaviors between the
victim transmitter and receiver (with three antennas). At
least 5 persons are involved in each experiment. In the
default setting, the distance between the victim and attacker
transmitters is about three meters. We totally collect 14772
normal CSI samples, 16479 CSI samples under untargeted
attacks, and 31270 CSI samples under targeted attacks. All
the experiments are carried out by adhering to the approval
of our university’s Institutional Review Board (IRB).
Metrics: We defined two metrics to quantitatively mea-
sure the attack effectiveness: untargeted attack success rate
(UASR) and targeted attack success rate (TASR). UASR is
the probability that the jamming signals mislead the CBRS
to output a false behavior label. It can be calculated by:

cor

UASR = Accpor — NZ?; ,

unt

(10)

cor and N2, are the reproduced behav-
ior recognition accuracy of the four systems (e.g., 98.5%
in WiFall), the number of correctly classified untargeted
adversarial CSI samples, and the number of all untargeted
adversarial CSI samples, respectively. Similarly, TASR is the
probability that a CSI sample of behavior y, is classified as
the behavior y;, when the victim transmitter is influenced by
the targeted jamming signal s‘?_’b. It can be calculated by:
NCOT

TASR = ~tor
Nt Arall

ar

where Accnor, NE°

(11)

where N£o" and N are the number of targeted adversarial

CSI samples that are classified as the target behavior and the
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number of all targeted adversarial CSI samples of possible
(Ya,yp) pairs.

5.2 Overall Attack Effectiveness

To measure the effectiveness of our attack approaches, we
first calculate the UASRs and TASRs of all volunteers, and
then obtain the averages as the final results. The UASRs of
NIC and SDR are shown in Fig. 13. It can be observed that,
with a NIC as the attacker transmitter, the highest UASRs
for WiFall, STFT, SignFi, and WiLSTM can achieve 72.3%,
84.0%, 87.0%, and 52.6%, respectively. As for the SDR, the
highest UASRs for the four systems are 68.2%, 83.3%, 87.5%,
and 57.5%, respectively. Besides, in most cases, there is no
obvious UASR difference among the three environments.
The UASR of WiFall in lab is higher than that in the other en-
vironments. It is very likely to be induced by the hardware
imperfection and ambient RF noise, as the lab has many
WiFi access points that could emit interfering WiFI signals
from time to time, while the RF environments in the home
and hall are relatively clear. In short, the high UASRs on
the three environments indicate that our untargeted attack
approach is significantly effective.

For the targeted attack, we average the TASRs over three
environments and compare the targeted attack approach
with a baseline, i.e., the random jamming signal generation
method in the untargeted attack approach. The results of
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(c) Hall environment.
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Fig. 16. Effectiveness of targeted attack under different occlusion ob-
jects.

NIC and SDR are shown in Fig. 14. ‘Random’ means the
baseline and ‘Genetic Algorithm’ represents our targeted
attack approach. It can be found that our targeted attack
approach outperforms the baseline in all systems. The high-
est TASRs of NIC for these four systems are 55.2%, 54.5%,
47.5%, and 51.0% respectively. For the SDR, the highest
TASREs for these systems are 61.2%, 52.0%, 50.5%, and 54.2%,
respectively.

We also evaluate the time cost used to launch an attack.
The time cost can be divided into two parts: signal genera-
tion and signal emission. For doing the former, our program
needs to spend a few microseconds. Moreover, the hardware
can achieve the latter within 16 microseconds. Thus, the
attack can be launched in real time.

5.3 Non-Line-Of-Sight Attack

In real-world attack scenarios, the main propagation path
of signals between the victim transmitter and the attacker
transmitter may be occluded by some objects. This attack
scenario is called NLOS attack. The power of jamming
signals under this scenario would be reduced by the occlu-
sion object. We also evaluate our approach in this extreme
case. Specifically, we place the attacker transmitter eight
meters away from the victim transmitter and test with five
types of materials contained by the objects in our daily
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Fig. 18. Effectiveness of targeted attack under different attack distances.

lives: cystosepiment, glass, wood, hard paper, and concrete
wall. The thickness of them is 10.8, 0.5, 1.0, 2.5, and 28.0
centimeters respectively. In the setting of the concrete wall,
the CBRS and the attacker transmitter are in different rooms.
The untargeted attack results of NIC and SDR are shown
in Fig. 15. We can observe that the UASRs of different
occlusion objects are similar, no matter we use NIC or SDR
to emit jamming signals. The reason behind is that the
jamming signal is utilized to stop the victim transmitter
emitting signals, rather than change the values of normal
CSI elements. As long as the power of the jamming signal
is larger than the collision avoidance threshold of the victim
transmitter, the attack can be successful. We also show the
targeted attack results in Fig. 16, in which we can find that
there is no obvious difference among different occlusion
objects as well. Therefore, our attack approaches are still
effective under occlusion conditions.

5.4 Impact of Distance

To explore the impact of the distance between the victim
transmitter and the attacker transmitter, we change the dis-
tance from 3 meters to 28 meters with a step of 5 meters. The
UASRs of the NIC and SDR are shown in Fig. 17. Similar to
the results of NLOS attack experiments, the distance (within
28 meters) has negligible effects on the attack effectiveness
in WiFall, STFT, and SignFi. However, the UASRs of the
WILSTM system are unstable and jittering within the range
from 52.3% to 71.5% randomly. This randomness is not
induced by the distance variation, but the randomness in
our untargeted jamming signal generation approach. The
targeted attack results under different distances are shown
in Fig. 18. Likewise, the distance does not affect the targeted
attack effectiveness much. Therefore, an attacker is able
to effectively launch long-distance untargeted and targeted
attacks, while being hardly detected by CBRS users.

5.5

In our default setting, the transmission rate of the victim

Impact of Transmission Rate

10

transmitter is 100 packets per second. This transmission rate
is adopted by many CBRSes [12]. However, 100 is not the
only choice. CBRS users can use any transmission rate (e.g.,
500) when they train the behavior classifier. In this part, we
explore the impact of transmission rate by varying it from
100 to 1000 in step of 100. The effectiveness of NIC of the
four systems in three environments are shown in Fig. 19. It
can be observed that the variation of the transmission rate
does not affect the attack effectiveness too much when we
use NIC as the attacker transmitter. The attack effectiveness
of SDR of the four systems are shown in Fig. 20(a), (b), (c),
and (d), respectively. Similar to the results in Fig. 19, we do
not find apparent UASR variation when the transmission
rate increases. Hence, the transmission rate hardly impacts
the effectiveness of targeted attack.

5.6 Transferability Study

We also evaluate the transferability of our adversarial sam-
ples (i.e., a black-box setting). We train new classifiers with
different architecture parameters among different tasks by
following the standard setting [42], and then feed the previ-
ous adversarial samples into the new classifier. Specifically,
we respectively used an RF classifier with 100 trees, a LR
classifier with ‘one vs. rest’ strategy, a four-layer CNN, and a
Bi-LSTM to design jamming signals in WiFall, STFT, SignFi,
and WILSTM, while testing the attack effectiveness with
an RF classifier with 50 trees, a LR with multinomial loss,
a five-layer CNN, and an LSTM, respectively. The results
show that the TASRs for NIC are 50.6%, 42.0%, 30.8%, and
37.2% in WiFall, STFT, SignFi, and WiLSTM, respectively.
Meanwhile, the TASRs of SDR for these four systems are
53.0%, 45.6%, 32.5%, and 42.0% respectively. It can be found
that the TASRs for WiFall, STFT, and WiLSTM only drop
about 7%, which means that our targeted attack approach
has decent transferability. Although the TASR of SignFi
decreases a lot, it is still higher than 30.0%, which is also
impactful in CBRS attacking. Hence, our attack approaches
are effective under black-box conditions.

5.7 Universality of the Attack Approach

In addition to behavior recognition, our attack approaches
can be generalized to other WiFi-based sensing applications,
such as user authentication [43] and localization [44]. This
is because: 1) The transceivers in these applications also
comply with the CSMA/CA protocol; 2) Many of them
leverage machine learning techniques to achieve the sensing
goals. To show the feasibility of such attacks. we reproduce
a WiFi-based user authentication system WiPIN [43] with
a false accept rate of 2.4%. As shown in Fig. 12, WiPIN
also utilizes a pair of transceivers to probe the identity
information of the user in between. To launch untargeted
attacks, we also use the attack transmitter (NIC/SDR) in
Fig. 12 to emit jamming signals designed by our untar-
geted attack approach. As a result, 10.0% CSI samples of
illegitimate users are falsely accepted as legitimate users.
Intuitively, a better attack effectiveness can be achieved
by using our targeted attack approach. For doing so, the
attacker can first stealthily record the identity information of
the victim with his/er own transceivers. Since WiFi signals
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Fig. 20. Effectiveness of untargeted attack of SDR under different transmission rates.

are imperceptible to humans, the victim will not realize that
s/he is scanned by malicious WiFi signals. Then, the attacker
can use our targeted attack approach to optimize jamming
signals based on recorded identity information and launch
targeted attacks. The attack scenario is similar to Fig. 12
as well. Therefore, our attack approaches are effective in
compromising other WiFi-based sensing applications.

6 MITIGATION AND DISCUSSION
6.1 Geofencing WiFi Signals

Geofencing stops jamming signals from reaching the victim
transmitter. A necessity of our attack approaches is that the
power of jamming signals around the victim transmitter
is larger than the collision avoidance threshold. Thus, ge-
ofencing, such as building walls with metal and painting
walls with electromagnetic shielding paints, is an effective
mitigation solution. However, it is undesirable to adopt
geofencing as: 1) Geofencing also blocks legitimate WiFi
signals, which affects the normal use of WiFi signals for
communication. 2) Geofencing usually is costly. Strategic
geofencing remains challenging.

6.2 Adversarial Sample Identification

With this mitigation method, we can determine whether a
CSI sample is adversarial or not. To be specific, we first
extract five statistical features reflecting the degree of CSI
absence from CSI samples. These features include the num-
ber of delay times, maximal delay, minimal delay, average
delay, and median of delay. Then, we train a one-class
classifier (isolation forest [45]) with the features of normal
CSI samples. The experiment results show that our classifier
can identify all the adversarial samples introduced by NIC
and 98.8% adversarial samples caused by SDR. Thus, this
mitigation can help CBRSes defend against our attacks effec-
tively. Nevertheless, 23% normal samples are misclassified
as adversarial ones. Therefore, this mitigation also sacrifices
a little usability of CBRSes. It is difficult to balance the
usability and security while using this mitigation method.

6.3 Adversarial Training

To mitigate the impacts of adversarial CSI samples, users
can improve the robustness of the behavior classifier by
adding some adversarial CSI samples to the classifier’s
training set. These adversarial samples can be collected by
the user with his/er own devices by simulating the attack
scenario. In this way, the classification accuracy of adver-
sarial CSI samples in WiFall, STFT, SignFi, and WiLSTM
can achieve 65.0%, 68.8.0%, 75%, and 62.5%, respectively.
However, adopting this mitigation method has to deal with
a trade-off between the usability and security due to the fol-
lowing reasons: 1) Adding adversarial CSI samples into the
training set brings massive extra overhead since users need
to simulate the attack to collect adversarial CSI samples; 2)
This mitigation method induces the degradation of normal
CSI samples’ classification accuracy, e.g., a 13% decrease in
STFT system. Therefore, this mitigation should be further
improved in defending against the proposed attacks.

6.4 Discussion

As aforementioned, we present three mitigations to defend
against our attack approaches. Indeed, these solutions re-
quire the user to make a trade-off between the usability
and security. However, it is this point that suggests that
researchers should pay more attention to the security of
WiFi sensing rather than always focusing on improving the
sensing precision. Here, we give two potential solutions that
could completely solve the security problem. 1) Training a
stronger adversarial sample discriminator. In Sec. 6.2, we
feed some statistical features into the isolation forest to
distinguish adversarial samples from normal ones. It is pos-
sible to extract more representative features that can better
characterize the adversarial sample. With these enhanced
features, the user can employ a stronger classification al-
gorithm like deep neural network to accurately identify
adversarial samples without misjudgment. 2) Improving
behavior classifier’s robustness. In Sec. 6.3, we propose to
add adversarial samples to the training set to improve the
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robustness of the behavior classifier. In fact, such robustness
could be further improved by more advanced adversarial
training techniques like FreeAT [46]. Specifically, the user
can train the behavior classifier in multiple epochs. In each
epoch, the user updates not only the parameters but also
the jamming signals. With the evolution of the jamming
signal, the behavior classifier will become more robust as
the number of iterations increases. In this way, it is possible
to obtain a behavior classifier that can accurately recognize
both adversarial and normal CSI samples.

7 RELATED WORK

Behavior recognition systems have been widely deployed
in many human-computer interaction applications. Tra-
ditional behavior recognition system usually is camera-,
wearable-, phone-, or sonar-based [1], [2], [3], [4], [5], [6],
[7], 171, [8], [47]. For example, Guan et al. [8] proposed to use
ensemble LSTM to improve the gesture recognition accuracy
of individual LSTM on wearables. To enable non-intrusive
and device-free human behavior recognition, WiFi-based
solutions [48] were proposed and developed rapidly. For
instance, Guo et al. [16] have shown the feasibility of utiliz-
ing CSI amplitude and DT/RF/CNN/LSTM to accurately
recognize activities. Nevertheless, previous works rarely
paid attention to the security of the CBRS. In this paper, we
explore the security of CBRS mainly from the perspective of
an attacker.

WiFi-based attack techniques can be divided into active
and passive ones according to whether the attack signal
is emitted by the attacker or not. In the active attack, an
attacker emits WiFi signals to sense physical-layer privacy
of victims [49], [50], [51]. For example, Ali et al. [50] propose
WiKey to sense a victim’s keystroke. WiKey first emits WiFi
signals towards the victim’s keyboard, and then analyzes
the signals reflected off the keyboard to infer the keystroke.
In the passive attack, an attacker eavesdrops the WiFi sig-
nals emitted by victims and mine private information from
these signals [29], [52], [53]. For instance, Cheng et al. [53] ex-
tract features from public WiFi signals to obtain WiFi users’
privacy, such as identity, location, and financial privacy. To
our knowledge, we are the first to achieve physical attacks
towards CBRSes.

8 CONCLUSION

In this paper, we noticed that there are security threats in
WiFi-based behavior recognition systems. By inducing CSI
absence in collected CSI sample, we can manipulate the de-
cision of the CBRS. We proposed two approaches to achieve
untargeted attack and targeted attack, respectively. The ex-
periment results on four real-world CBRSes demonstrated
the high success rates of our attack approaches. Moreover,
our attack approaches can be easily generalized to other
WiFi-based sensing applications, e.g., user authentication. At
last, we introduced three methods to suppress the hazard of
the attacks.
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