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Abstract—The implementation of artificial intelligence (AI) in
wireless networks is becoming more and more popular because
of the growing number of mobile devices and the availability
of huge amount of data. However, directly transmitting data
for centralized learning will cause long communication latency
owing to the limited communication resource and may incur
severe privacy issue as well. To address these issues, we consider
the federated edge learning (FEEL) system in this paper and
develop an importance-aware joint data selection and resource
allocation algorithm to maximize the learning efficiency. Aiming
at selecting important data for local training, we first analyze the
relation between loss decay and gradient norm, which indicates
that larger gradient norm leads to faster learning process.
Based on this, a learning efficiency maximization problem is
formulated by jointly considering the communication resource
allocation and data selection. The closed-form results for optimal
communication resource allocation and data selection are both
developed, where some insights are also highlighted. Also, an
optimal algorithm with low computational complexity is devel-
oped to obtain the optimal end-to-end latency in one training
period. Furthermore, we show that the sample size should be set
to its upper limit in order to maximize the learning performance.
Finally, we conduct extensive experiments on three popular
convolutional neural network (CNN) models. The results show
that the proposed algorithm can effectively reduce the training
latency and improve the learning accuracy as compared with
some benchmark algorithms.

Index Terms—Federated edge learning, learning efficiency,
learning accuracy, data selection, data importance, resource
allocation.

I. INTRODUCTION

Over the past few years, artificial intelligence (AI) has
achieved remarkable success in various areas, such as face
recognition, image classification, and natural language pro-
cessing [1]. Al has also been widely adopted in communica-
tion networks for improving the communication performance
[2], [3]. The success of Al mainly comes from the large
amount of data that are collected for training. However,
data in wireless networks are generally distributed over a
large amount of mobile devices, which can contribute to the
network intelligentization for the future 6G [4], [5]. To fully
utilize these data, conventional methods request devices to
upload the raw data to a remote cloud server for centralized
learning. However, direct data transmission would suffer from
two major disadvantages, i.e., the privacy disclosure and the
long communication latency, and will eventually degrade the
learning performance, such as convergence time and learning
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accuracy. To address both issues, federated edge learning
(FEEL) [6]-[8] has been recently proposed by combining
federated learning (FL) [9], a specific distributed training
framework, with the mobile edge computing (MEC) [10].

By periodically collecting the local learning updates (either
gradient vectors or model parameters) at the network edge,
FEEL not only preserves user privacy but also reduces the
communication delay. However, calculating and transmitting
learning updates may still cause large computation and com-
munication overheads, i.e., high energy consumption and
long latency, due to the limited communication resource and
computation capacity of the mobile device. To deal with this
challenge, several recent works [11]-[16] have investigated the
communication-efficient FEEL. A joint bandwidth allocation
and scheduling algorithm was developed in [11] to attain
certain model accuracy by minimizing the total latency. A
broadband analog aggregation technique was proposed in [12]
to achieve a low-latency FEEL system based on the over-
the-air computation technique and two communication-and-
learning tradeoffs were revealed therein. Aiming at reducing
energy consumption, the authors in [13] proposed an energy-
efficient radio resource management strategy by optimizing
bandwidth allocation and user scheduling in each training
period. Besides, the authors in [14] investigated the energy-
efficient radio resource management for analog aggregation
in the FEEL system, where an online energy-aware dynamic
worker scheduling policy was proposed under a long-term
energy constraint. The tradeoff between energy consumption
and end-to-end latency in the FEEL system was studied in
both [15] and [16] and some closed-form results were also
derived.

The above works mainly aim at reducing the energy
consumption and end-to-end latency. However, the learning
performance in the FEEL system cannot be guaranteed due
to the dynamic channel fading. Towards this end, several
works [17], [18] have studied the FEEL system from the
perspective of learning performance improvement in wireless
fading scenarios. The authors in [17] analyzed the impact of
packet errors on the learning performance and minimized the
loss function by jointly considering the communication re-
source allocation and user selection. A novel learning criterion,
namely learning efficiency, was proposed in [18], where the
batchsize was optimized to dynamically adapt to the wireless
channel condition and device computation capacity to improve
the learning performance.

The aforementioned works mainly focus on reducing the
communication consumption or improving the learning perfor-
mance by joint resource allocation and user selection, where



the specific data structure is not exploited. However, different
data are not equally important to the learning process. To
further improve the learning performance, a straightforward
way is to select only a part of important data based on their
importance level, such as the loss value [19], the change
in parameters [20], and the gradient [21], [22]. Some prior
works have used the data importance for packet retransmission
and user scheduling [23], [24]. In [23], the authors pro-
posed a data-importance aware automatic-repeat-request for
both support vector machine (SVM) and convolutional neural
networks (CNNs), where the data importance is measured by
the uncertainty. Later, based on the elegant communication-
learning relation between the signal-to-noise ratio (SNR) and
the data importance, an importance-aware user scheduling was
developed for the edge learning system in [24] and some
principles were proposed to achieve fast convergence.

Although the aforementioned works have developed several
data importance indicators, none of them has considered to
improve the learning efficiency by exploiting data importance
in the FEEL system. Inspired by this, we propose a joint data
selection and communication resource allocation algorithm
based on the data importance to reduce end-to-end latency and
improve learning efficiency in the FEEL system. Our study
shows that the communication resource should be allocated
dynamically based on wireless channel condition and data im-
portance. The main contributions of this work are summarized
as follows.

o We theoretically analyze the impact of the gradient norm
on the loss decay, which drives us to use the square of
estimated gradient norm after the forward propagation
step as the data importance indicator. In this way, the
computation latency for local training can be greatly
reduced by properly selecting important data.

e To improve the learning performance, we formulate
a learning efficiency maximization problem by jointly
considering the communication resource allocation and
data selection, which is difficult to solve. To tackle this
challenging problem, we first develop the optimal data
selection strategy and communication resource allocation
for given end-to-end latency and sample size. Then,
the optimal end-to-end latency can be found by the
Golden-section search algorithm with low computational
complexity.

o Through theoretical analysis, we find that the expected
learning efficiency increases with the sample size, which
implies that the sample size should be set to its upper
limit to maximize the learning performance. Finally, test
results on three popular CNN models show that the pro-
posed scheme can reduce the training latency and improve
the learning accuracy at the same time. Moreover, its
generalization ability is also demonstrated.

The rest of this paper is organized as follows. In Section
II, we introduce the FEEL system with data selection and
analyze the delay in each training period. In Section III,
we propose a data importance criterion based on the loss
decay and formulate an optimization problem to maximize the
learning efficiency. The optimal resource allocation and data

selection policy is developed in Section IV. Section V presents
the test results and the whole paper is concluded in Section
VL

II. SYSTEM MODEL AND DELAY ANALYSIS

In this section, we will introduce an FEEL system with
data selection. After that, the detailed procedures and the
corresponding latency in each training period are analyzed.

A. FEEL System

In an FEEL system, N devices, denoted by the set N' =
{1,2,---, N}, collaborate with an edge cloud located at
the base station (BS) for training an identical CNN model,
as shown in Fig. 1. To achieve it, each device collects
data and the dataset of device n is denoted by D, =
{(x1,91), (®2,92), -+, (®nrr,,ysr, )}, where M, is the size
of the n-th device’s dataset. In the training process, each
device first calculates the local gradient based on its sampled
data and then uploads the local gradient to the edge cloud
for gradient aggregation. After that, the edge cloud broadcasts
the global gradient to all devices and each device updates its
CNN model based on the global gradient. However, due to the
limited device computation capacity, calculating local gradient
is usually time-consuming. Therefore, we are motivated to
propose a scheme to reduce the computation consumption by
selecting the important data for local training.
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Fig. 1. System model.

B. CNN Model

In this paper, we use ¥ (x, w) to represent the CNN model
with parameter vector w and measure the training error of data
sample (x;, y;) by the loss function ¢ (¥ (x;, w), y;). Then, the
local loss function of each device can be given by

>t @(mi,w),y), VneN. (1)
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Consequently, the global loss at the edge cloud can be ex-
pressed as the average of all local loss functions, as
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To minimize the global loss, stochastic gradient descent
(SGD) algorithm is widely used. Specifically, a subdataset
D is sampled from the dataset to calculate the gradient in
each iteration. Then, the gradient vector of each device can be
expressed as

g;lL” =VL, (w,ﬁn) = Z
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According to [25], the gradient is calculated by two steps:
forward propagation and back propagation. The forward prop-
agation calculates the loss of each data and the backward
propagation calculates the gradient based on the loss value.
Moreover, in the k-th training period, the parameter updating
at the edge cloud is given by

w[k+1]=IU[k]—77[k]gw[k]
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where gW|[k] is the global gradient and 7[k] is the learning
rate.

According  to [7], model training can  be
accelerated by using important data for training. Let
onm (me{1,2,--- ,M,},n € N) measure the importance
of the m-th data of device n. Moreover, we assume
that {o,m} is sorted in a non-increasing order, i.e.,
On,m = On,m+1, VN, m. To measure the data importance, we
need to calculate the loss of the data [23], [26], which can be
derived after forward propagation. By selecting the important
data, the gradients of these unimportant data are not needed
to be calculated in the backward propagation step. In this
way, the training latency can be reduced and the learning
efficiency can be improved.

C. Wireless Channel Model

In the FEEL system, there exist two transmission stages in
each training period, i.e, local gradient uploading and global
gradient broadcasting.

In the local gradient uploading stage, we adopt the time di-
vision multiple access (TDMA) method for data transmission,
where each time frame is divided into N time-slots. Denote
W and Ny as the system bandwidth and the noise power,
respectively. Let hY denote the channel power gain of the n-
th device and pY denote the corresponding transmit power.
Since the data size of the gradient vector is usually large, the
latency for gradient uploading (more than one second) is much
longer than each time frame (10 ms in LTE standard 27D
Therefore, we use the average achievable data rate to evaluate
the device n’s latency of gradient uploading [29], as
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! Take ResNet18 as an example. The data size of the gradient vector is about
342 MBits. The uplink data rate in LTE standard is 50 Mbps and the transmit
delay is more than one second. Even if we use the gradient compression
method in [28], the transmission delay is still about 0.5 second.

where Ej, {-} is the expectation over the channel power gain.
We should note that TDMA method is adopted in this paper
since it has been widely used in current communication sys-
tems. The synchronization issue during the training period can
be well guaranteed by the TDMA method. Nevertheless, our
results can be extended to other access methods, such as non-
orthogonal multiple access (NOMA) and orthogonal frequency
division multiple access (OFDMA), with some modifications
on the data rate model.

In the global gradient broadcasting stage, we adopt broad-
casting for data transmission since the global gradient is the
same for all devices. Then, the achievable data rate for all

devices can be expressed as
B |1,B|?
RP = min {WEh {10g2 <1 + p|n|> }} , (6)
neN NO

where h8 denotes the downlink channel power gain of device
n and p® denotes the corresponding transmit power of the BS.

D. Latency Analysis

As mentioned before, we aim at reducing the local compu-
tation latency and improving the learning efficiency via data
selection based on data importance. Therefore, the end-to-end
latency is essential and should be quantitatively analyzed. As
shown in Fig. 1, the detailed procedures and the corresponding
latency in each training period can be analyzed as follows.

1) Forward propagation. A subdataset is first sampled
from each local dataset with the sample size BE. After
that, each device calculates the loss of its sampled data
and the importance oy, ,,. Let th denote the forward
propagation speed of device n, i.e., computation latency
of forward propagation per data. Then, the latency for
the forward propagation can be expressed as

TF = BEtE wvn e V. (7)

2) Data importance uploading. After forward propaga-
tion, each device uploads the data importance o, ,, to
the edge cloud via TDMA method.? Since the data
importance is only a scalar, its size is small enough so
that its transmission delay can be ignored.

3) Data selection. After receiving the data importance from
all devices, the edge cloud then selects data based on
their importance values and channel data rates. Specifi-
cally, the edge cloud feeds back the number of selected
data, denoted by B, to each device.

4) Backward propagation. After receiving the number of
selected data, device n will pick B,, data with the largest
data importance to perform backward propagation and
calculate the local gradient vector, g% [k]. Let tB denote
the backward propagation speed of device n, i.e., com-
putation latency of backward propagation per data. Then,

2If one device fails to upload the data importance, it cannot join this training
period. However, this device can still receive the global gradient vector from
the edge cloud, which ensures that it can join the next training period.



the total latency for each device to perform backward
propagation is

TP =t2B,, Vn € N. ®)

5) Local gradient uploading. Each device sends its local
gradient to the edge cloud. As we mentioned before, we
adopt TDMA method for local gradient uploading. Let
T, denote the proportion of device n’s slot in one time
frame. Then, according to [18], [29], the transmission
delay of device n can be expressed as

v
U
Tn - T R27 (9)
where V' is the data size of local gradient and is a
constant for all devices.

6) Gradient aggregation. After receiving the local gradi-
ent vectors from all devices, the edge cloud aggregates
them to calculate the global gradient, as

01K = =g > oKL

nenN " neN

Since gradient aggregation is only an average operation,
the latency of this stage can be neglected.

7) Global gradient broadcasting. After gradient aggrega-
tion, the edge cloud broadcasts the global gradient vector
to all devices. Thus, the latency for global gradient
broadcasting is given as follows for all devices

1%
= %5 (11)

8) Model updating. Each device then updates its model
according to (4). Since the initial parameters w][0] is
the same, each device shares the same parameter after
updating. The updating latency of device n is denoted
by TM, which cannot be neglected due to its limited
computation capacity.

(10)
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Fig. 2. Timing chart of one training period. Steps 2, 3, and 6 are not shown
in the timing chart since the latency is too short that can be neglected.

Based on the above analysis, we can draw the timing chart
as shown in Fig. 2. Note that the data selection step cannot be
performed until receiving the data importance from all devices
and the gradient aggregation step cannot be performed until
receiving the local gradient vectors from all devices. Besides,
although one training period starts from forward propagation
and ends with model updating, it can be better understood if
we assume that one training period starts from model updating
and ends with global gradient broadcasting. Let TMF denote

the total latency for model updating and forward propagation,

ie., TMF = max {TM + TE}, representing the latency of step
ne.

1 and step 8. Then, the total latency of one training period can

be expressed as

T =T1MF T+ T} + TP, 12

+max {T7? + T/} + (12)

To better utilize the time for forward propagation, each

device should calculate the loss of its sampled data as many

as possible in order to offer more data choices. Therefore, the
sample size should be

TM’F _ TM

13)

ITII. LEARNING EFFICIENCY ANALYSIS

In this section, we will first propose the data importance
metric. Then, an optimization problem is formulated to max-
imize the learning efficiency.

A. Data Importance and Learning Efficiency

In this paper, we aim at reducing the local computation
latency and improving the learning efficiency by data selection.
To this end, we should first define the data importance based
on model updating, which eventually influences the learning
performance. From (4), we can find that the gradient vector
influences the model updating, indicating that the data impor-
tance can be measured by its gradient. With a greater gradient,
the data can contribute more to the parameter updating and
is more important to the model convergence. However, the
real gradient vector is obtained after two steps, forward
propagation and back propagation. Therefore, the computation
consumption would be very large if we select data based on
the real gradient vector. Fortunately, we can estimate the norm
of gradient vector based on the loss of each data after forward
propagation according to [26], as

w ol (U (x;, w),y;
g [k}(mi,yi>||2:H<<awm>

ozt

2
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where x ! is the input of the active function in the output layer
of CNN, p is a coefficient determined by the CNN model,
and || - ||2 is the L2 norm. According to [26], the backward
propagation requires about twice the amount of time as the
forward propagation since it needs to compute full gradients.
Since the proposed method only calculates the gradient of the
parameter in the output layer, it can significantly reduce the
computation cost. Therefore, the latency for estimating the
gradient norm can be greatly reduced.

Till now, we have found that the gradient vector influences
the learning performance. However, the mathematical relation
between them is not clear. To tackle it, we first measure the
learning performance improvement by the global loss decay
in one training period, as

AL[K] = L(wl[k — 1]) — L(wl[k]). (15)



According to [30], the relation between the global loss decay
and the gradient norm is

AL[K) = v ||g¥ k]| |2

PR

(16)

where v is a coefficient determined by the specific CNN
model. Then, by combining (14) and (16), we can conclude
that the square of estimated gradient norm can measure the
loss decay. Therefore, we can define the data importance in
the following.

Definition 1: The importance of data (x;,y;) in device n
can be evaluated by the square of its estimated gradient norm,

as )
0 (V(x;,w),y;)
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We should note that although our analysis is based on CNN,
the proposed data importance can be utilized for other neural
networks that adopt SGD algorithm to minimize the loss
function. From the above definition, the importance of data
represents the loss decay it can bring to the global loss
function. Then, the loss decay function of device n can be
defined as
Br
fn(Bn) =Y 0nm, Bn < By, (18)
m=1
which represents the total loss decay brought by device n when
B,, data with the largest importance are selected. It should be
noted that it is challenging to analyze the function f,(B,)
since B,, is a discrete variable. However, we can relax B,, into
a continuous variable since BY is typically large, such as 128.
Correspondingly, f,,(B,) can be fitted as a piecewise linear
function, as shown in Fig. 3. Then, we have the following
lemma.
Lemma 1: f,(B,,) is a concave function when B,, is relaxed
into a continuous variable.
Proof: Please see Appendix A. [ |

Based on the lemma, the global loss decay in one training
period is givenby AL = > f,,(B,,), which is the summation

neN
of the loss decay brought by all devices. Therefore, according
to [18], the learning efficiency can be defined as
n BTL
AL n;./\/ fn(Bn)

Eziz
T TM»F+m%<{T§ +TY}+ TP’
ne
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which represents the global loss decay rate in each training
period. We should note that the learning efficiency jointly
considers the learning performance (A L) and the communica-
tion performance (7'). The improvement of learning efficiency
represents that both the learning performance and communi-
cation performance are improved. By maximizing the learning
efficiency, the training process can be accelerated.

B. Problem Formulation

In this paper, we aim at maximizing the learning efficiency.
The optimization problem can be mathematically formulated
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Fig. 3. The loss decay function of device n.
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BMr < B, < B vneN, (20c)
TMF < PMFEmax yp e A (20d)
BY 7, T,TMF >0, Yn € N. (20e)

In the above, (20b) represents the uplink communication re-
source limitation, (20c) guarantees that the number of selected
data should not exceed the sample size and should not be less
than the minimum number requirement B™" to ensure the
participation of each device, and (20d) bounds the maximum
latency of model updating and forward propagation, denoted
by TMFmax que to the hardware limitation, such as memory
size.

The optimization variables in problem P1 contain the
data selection (B,), the communication resource allocation
(7n), the total latency of model updating and the forward
propagation (T™F), and the total latency of one training period
(T). Note that the reason for optimizing T™F here is that TMF
determines the sample size, which will also influence the data
selection.

We should note that problem P1 is not easy to solve for
the following reasons. First, TMF can influence the sample
size {BF} and the loss decay function. With different 7™F,
the learning efficiency would be different but it is hard to
give a detailed expression between the learning efficiency and
TMEF, Secondly, TMF should be decided before the forward
propagation. Last but not the least, even if T™MF is given,
problem P1 is still non-convex and cannot be solved directly.

Based on the considerations, we will first solve the problem
when T™MF is given and then analyze the impact of 7™ on
the learning efficiency in the following section.

IV. OPTIMAL SOLUTION

In this section, we first analyze the problem for given
the latency of model updating and forward propagation, i.e.,
TMF. Then, the optimal data selection strategy and resource
allocation policy are proposed. After that, the optimal solution
to problem P1 is obtained by leveraging the probability theory.



A. Optimal Data Selection and Resource Allocation

As mentioned before, TMF is hard to be optimized directly.
Therefore, we first consider the following problem with given
TMF  as

oy fn(Ba)
2: Lm=1Jn\7n) 21
& {Bn,7,T} T ’ (21a)
s.t. T™F 7B 47V TP < T, Yn € N,(21b)

(20b), (20c), and (20e).

Note that problem P2 is still non-convex. To solve it, we
further assume that the total latency of one training period, 7',
is given. Then problem P2 becomes convex since the objective
function is concave and all constraints are convex. Therefore,
we can utilize the Lagrangian method to find the optimal
solution. The partial Lagrange function can be defined as

T ATTIN S

+ Z i (TMF + Bot? +
n=1

D
R +7T T) , (22)
where )\ and p,, are the Lagrange multipliers associated with
the constraints (20b) and (21b), respectively. Before presenting
the optimal solution, we should note that f,(B,) is not
differentiable at some points so that its subgradient can be
expressed as

8f7l (BTL)
0B,
where Z is the set of non-negative integers and [-] represents

the rounding up operation. Moreover, we define the maximum
number of selected data as

if B, ¢ Z,
otherwise,

= a-nv [Bn]s

23
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B;nax — min (Bf” T—TM,F_TD> 7

th

which is decided by the sample size and the latency for
backward propagation. Then, the data selection function can
also be defined as

Ofn (Bn) M,F 2 RE
“op, (I-TH - v

which can be derived by solving problem P2 under given 7.

Denote {B}, 7%} as the optimal solution to problem P2
under given 7. Then, by applying the Karush-Kuhn-Tucker
(KKT) conditions and simple mathematical calculation, we can
obtain the optimal data selection and communication resource
allocation policy, as shown in Theorem 1.

Theorem 1: The optimal data selection strategy and com-
munication resource allocation policy can be expressed as

B} = [6a(\) g » W¥n € N, (26a)

gn(By) = TP —B,t}) (25)

v
_TD
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where ¢, (x) is the inverse function of g¢,(B,) and \* is
the optimal value of the Lagrange multiplier satisfying the
communication resource limitation: anl 7, = 1. Note that

+
B*tB)RU> ,¥n € N, (26b)

n'n

[X]¢ = max {min {X,a},b} and (X)T = max {X,0}.
Proof: Please see Appendix B. [ ]

Remark 1: The optimal data selection is achieved when
gn(Bn) = A\* is satisfied. Without loss of generality, we can
consider the case that B} ¢ Z, where the gradient of f,,(B,,)
is equal to the importance of [B,|-th data, ie., o, 5,7
Then, the date selection strategy is mainly determined by the
backward propagation speed, the data importance, and the data
rate. First of all, g,(B,) decreases with B,, since o, g,
decreases with B,,. More specifically, g,,(B,,) decreases with
B, in the power of 2 even if o, [p,7 is fixed. Based on this,
we can conclude that one device with more important data
would have more data to be selected to perform backward
propagation, which consists with our intuition. On the other
hand, g,,(B,,) decreases with the backward propagation speed
tB in the power of 2. The higher the backward propagation
speed is, the more data the device can calculate. Besides, a
device with higher data rate is likely to have more selected
data.

Moreover, from (26b), the communication resource alloca-
tion policy is related with the backward propagation speed,
the data rate, and the optimal number of selected data. A
device with higher backward propagation speed and data rate
needs less communication resource to satisfy the latency re-
quirement. Furthermore, the optimal communication resource
allocation policy in (26b) indicates that the end of each
device’s transmission is synchronized, which can fully utilizes
the available time to improve the learning efficiency.

The Lagrange multiplier A* in (26a) can be determined by
classical bisection search algorithm. To reduce the computa-
tional complexity, we first analyze the upper and lower bounds
for A*. Since \* is the Lagrange multiplier associated with
the inequality constraint (20b), the lower bound is zero. The
upper bound of A* is derived when the number of selected data
of each device is the minimum one, B,‘;‘in. Then, by simple
mathematical calculation, we have the range of \* as shown
in the following lemma.

Lemma 2: The range of \* is given by

A 2> Amin =0, (27a)
A* < Amax
max {"B (T—TMF-TP—Bnt}) QRS} (27b)
neN vT '

The detailed algorithm for searching A\* is given in Al-
gorithm 1. The main idea is to update the value of A until
the communication resource allocation constraint (20b) is
satisfied. The computational complexity is O (N log(1/e)),
where ¢ is the maximal error tolerance.

B. Optimal Selection of T

Thus far, we have obtained the optimal F(7T) under the
given total latency requirement 7. Then, we optimize T to
develop an optimal solution to problem P2. Note that the
optimal data selection strategy and resource allocation policy
are influenced by the total latency requirement. Therefore, we
introduce the following theorem to ensure that our algorithm
can find the optimal solution to problem P2.



Algorithm 1: Bisection search algorithm for A\*.

1 Set the maximal error tolerance «;

2 Set Ay = Amins Au = Amax;

3 repeat

4 | Let A=A+ Ay)/2;

5 Obtain {B,, 7,} according to (26a) and (26b);
6 | if 0, 7, > 1 then

7 | Au= X

8 else

9 ‘ /\z = )\;

10 end

11 until ‘25:1 Tn — 1’ <e
12 Output A* = X and the corresponding {B;:, 7,5 }.

Theorem 2: E(T) is a strictly unimodal function with T >

Proof: Please see Appendix C. [ |

Remark 2: A unimodal function is a function that has only
one peak (maximum) or valley (minimum) in a given interval.
Specifically, E(T) has only one peak as it first increases and
then decreases with 7', as shown in Fig. 4. From Theorem
2, the local maximum is the global one in the given interval.
Since the gradient of E(T') cannot be directly expressed, we
can utilize the Golden-section search algorithm [31] to find
the optimal 7. By narrowing the range of values, Golden-
section search algorithm can efficiently find an extremum of
a function inside a specified interval. As shown in Fig. 4, the
extremum would not be in [T, Thax| since E(Ty) > E(T5).
Therefore, the new range becomes [Tiin, Z2]. Moreover, T}
and 75 are decided based on the golden ratio.

Learning
efficiency
|
| [
o
|
| | | :
| | | | >
Tmin Tl TZ Tmax

Fig. 4. The relation between learning efficiency E(T') and total latency of
one training period 7.

To better perform the Golden-section search algorithm, we
have the following lemma about the range of T*.

Lemma 3: The range of T™* is given by

T* 2 Tin =T + Z = +T7, (282)
VN

T* < T = TMF + ma {BFtB R } +TP. (28b)

Proof: Please see Appendix D. [ ]

The lower bound in (28a) corresponds to the case where
no data is selected for backward propagation and the commu-
nication resource allocation is obtained to minimize the total
latency. The upper bound in (28b) corresponds to the case
where all data are selected for backward propagation and the
communication resource is equally allocated to each device.

Based on above analysis, we can obtain the optimal algo-
rithm to problem P2, as described in Algorithm 2.

Algorithm 2: Optimal algorithm for problem P2.

1 Set the maximal error tolerance e;

2 Set T[ = Tminy Tu = Lmax;
3 while |7, — T,| > ¢ do
4 Let T = Tu f+1(T —T1y), Ty, =
TZ + \[_,'_1 (T T@)
5 According to Theorem 1, obtain the optimal

values, F(Ty) and E(T5), when T is set to T}
and T5, respectively;

6 if E(Tl) > E(Tg) then
7 | T. =Ty

8 else

9 ‘ Ty =Tv;

10 end
11 end

12 Output the optimal solution.

C. Optimal Selection of TM*

Thus far, we have obtained the optimal solution to problem
P1 for the given value of T™F, In the following, we will
analyze how to choose TMF for further performance improve-
ment.

As mentioned in Section III, the specific impact of T™F on
the loss decay function is hard to mathematically expressed.
Thus, we consider using the probability theory for analysis.
Recall that f,(B,) is the summation of the B, most im-
portant data for device n. Then, according to [32], when the
proportion of the selected data to the sample size, denoted by
qn = B, /BE, is fixed, we have

i B (Ba))

Bn

where C,, is the mean value of loss decay of the selected
data. From (29), the expectation of f,(B,) is proportional
to B, when B, is large. Then, the total loss decay is also
proportional to the sample size. Meanwhile, the total latency
of one training period is composed of two parts: the latency
for local computation and the latency for communication. The
former is proportional to the sample size while the latter is a

=C,, YneN, (29)

B, —o0



constant. Therefore, the learning efficiency will increase with
TMF until it reaches its limit, as described in the following
theorem.

Theorem 3: Let E* denote the optimal learning efficiency
to problem P1. Then, the expectation of E* increases with
TMF and its limit is

N e
i BB =D (30)
Proof: Please see Appendix E. [ |

Remark 3: From (30), the limit of the learning efficiency
is mainly determined by the computation speed and the pro-
portion of the selected data. With a faster computation speed,
less time is required to perform a training period. Thus, the
learning efficiency can be improved. Moreover, the learning
efficiency increases with the proportion of important data, g,,.
The reason is explained as follows. The proportion of the
selected data in the training process is related to the model
accuracy of CNN. Specifically, fewer data become important
as the model accuracy increases, which eventually reduces the
learning efficiency.

Based on Theorem 3, we should sample as many data
as possible in the forward propagation. However, due to the
hardware limitation, such as memory size, T™F has its upper
limit, as

TM,FJnaX — mlj{} (TM + tELBFL‘,maX) , (31)

ne
where BF:™Ma% is the maximal sample size for device n. It
should be noted that the maximal sample size is determined
before the forward propagation stage. Therefore, T™MF can be
set to its upper limit in advance to maximize the learning
efficiency.

V. TEST RESULTS

In this section, we conduct experiments to evaluate the
performance of the proposed data-importance-aware FEEL
scheme.

A. Methodology

Wireless communication system: The BS covers a circle
area with a radius of 300 m and 6 devices are randomly located
in the coverage. The system bandwidth (W) is 10 MHz and
the noise spectral density (Ny) is —174 dBm/Hz. The channel
gains of cellular links (hY, hB) are all generated according to
the path loss model, 128.1 + 37.6log (d [km]), and the small-
scale fading follows the Rayleigh distributed with uniform
variance. The transmit power (pY) is set as 24 dBm for all
devices.

CNN model: We consider three common CNN models
for image classification, ResNetl8, DenseNet121, and Mo-
bileNetV2. The corresponding training dataset is CIFAR-10
[28], which consists of 60,000 32x32 colour images in 10
different classes. Specifically, it contains 50,000 training im-
ages and 10,000 test images. All training images are randomly
partitioned into six equal parts, which are assigned to six
devices, respectively. Due to the memory size limitation, the

maximum sample size (BF'™#%) is set as 128 for each device.
To ensure the participation of each device, we set the minimum
sample size (B;Z‘in) as 40. Moreover, the learning rate (1) is
set as 0.001 for all CNN models unless otherwise specified.

The computation frequency of each device is set as: 2
devices with 3.4 GHz, 2 devices with 3.8 GHz, and 2 devices
with 4.3 GHz.

B. Generalization Tests

In this part, we first test the generalization ability of the
proposed scheme. We implement our proposed scheme on
the three CNN models mentioned above and compare the
proposed algorithm with the conventional one where there
is no data selection and all sampled data join the backward
propagation. The learning accuracy and loss with different
CNN models are shown in Fig. 5 and Fig. 6, respectively. We
should note that curves in Fig. 5 and Fig. 6 vary with training
period instead of training time. From Fig. 5, the proposed
scheme achieves a significantly better performance than the
conventional one for all three CNN models. Correspondingly,
the loss of the proposed scheme decreases faster than that
of conventional scheme, as depicted in Fig. 6. The results in
both figures indicate two points. First, our proposed scheme
is practical and has a good generalization ability. Secondly,
the proposed scheme can accelerate the training process by
selecting important data.
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0.87 MobileNet, conventional 1
0.86 DenseNet, proposal
— — -DenseNet, conventional
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Fig. 5. The test accuracy with different CNN models.

To better verify the second point, we first introduce the
gradient norm ratio that is the ratio of the selected data’s
gradient norm to all data’s gradient norm. It can describe
whether the selected data can represent all data. The selected
data can exactly represent all data when the gradient norm
achieves one. Table I illustrates the proportion of the selected
data and the corresponding gradient norm ratio. Since they are
almost the same during the training period in Fig. 5 and Fig. 6,
we only plot the average values for different CNN models. It
can be observed that although only a small proportion (around
36%) of data are selected, the norm of those selected data’s
gradient is almost the same as if all data are selected. The
results confirm that our proposal can speed up the training
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Fig. 6. The test loss with different CNN models.
TABLE I

THE PROPORTION OF SELECTED DATA AND THE CORRESPONDING
GRADIENT NORM RATIO.

CNN Models ResNet | MobileNet | DenseNet
Proportion of selected data | 35.25% 36.59% 35.50%
Gradient norm ratio 99.94% 100.00% 99.95%

period by data selection since only important data are selected
for backward propagation.

In Fig. 5, we can see that the proposed scheme achieves a
higher final learning accuracy than the conventional scheme
for all three CNN models. The reason can be explained as
follows. During each training period, we select the important
data with large gradient norm, which is not predicted well
by CNN model. By only training those data, the model can
improve its accuracy. However, we can find that the loss of
our proposed scheme in Fig. 6 slightly increases at the end of
training. It is because most data are unimportant at the end of
training and the loss of unimportant data may increase though
the loss of important data can be reduced.

C. Performance Comparison

In this part, to show the performance improvement of
our proposed algorithm, we will compare it with several
benchmarks as follows.

e Equal resource scheme: This scheme is similar to our pro-
posal except that the communication resource is equally
allocated to each device, i.e., 7, = 1/N.

o All selected scheme: This scheme is similar to our pro-
posal except that all sampled data are selected for gradient
calculation, i.e., B, = BF.

o Conventional scheme: In this scheme, all sampled data
join the backward propagation in each device, i.e., B, =
BF, and the communication resource is equally allocated
to each device, i.e., 7, = 1/N.

o Half sample size scheme: This scheme is similar to our
proposal except that the sample size is set as 64 that is
half of the maximum sample size.

We consider 6 immobile devices whose distances to BS

are ranked as: device 1 < device 2 < device 3 < device
4 < device 5 < device 6, which influence the large-scale
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Fig. 8. The number of selected data and the gradient norm ratio for device
6.

fading. The small-scale fading varies with time for each
device. Without loss of generality, we adopt ResNet18 for the
following tests since different CNN models have the same
comparative results.

At the beginning of the training process, we set the learning
rate as 0.01. Fig. 7 shows the learning accuracy with different
schemes. From the figure, all schemes almost have the same
performance when the learning accuracy is low. The reasons
are twofold. First, the model cannot fit dataset well and most
of the data are important to be selected with low learning
accuracy, which means that data selection has little perfor-
mance gain in this case. Secondly, the communication latency
is shorter than the computation latency when the number of
selected data is large.

As training period continues, the learning accuracy increases
and the number of selected data decreases. Fig. 8 plots the
variation of the number of selected data with time and the
gradient norm ratio for device 6, as an example. Since some
data can be predicted well by the model with high learning
accuracy, they become unimportant. Meanwhile, we should
note that the gradient norm ratio is always above 90%, even
almost 100%, although the number of selected data decreases,
which means that the selected data can well represent all data.

At the end of the training process in Fig. 7, the increment of
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Fig. 10. An example of communication resource allocation with the proposed
scheme. The boundary between adjacent areas represents instantaneous com-
munication resource allocation result whereas the dashed line represents the
average resource allocated for each device.

learning accuracy becomes small but the algorithm still needs
long training time to converge. Therefore, we consider a pre-
trained ResNet18 that has achieved an initial accuracy of 86%.
Then, we plot the learning accuracy curve in Fig. 9. Here, the
learning rate is set to be 0.001 for achieving higher accuracy.
From Fig. 9, the proposed scheme can achieve its peak learning
accuracy fast and is the best one among all schemes. By
comparing the all selected scheme with our proposed scheme,
one can clearly see the gain obtained by selecting important
data. By comparing with the equal resource scheme, the gain
obtained by optimal communication resource allocation can
be clearly seen. Besides, the accuracy increment speed of the
half sample size scheme is lower than that of our proposed
scheme, which verifies Theorem 3. Furthermore, after 250
minutes of training, our proposed scheme almost achieves the
peak learning accuracy, 0.923. However, in the same time,
the conventional scheme only has an accuracy of 0.91 and
still needs 150 minutes of training to converge to an accuracy
of 0.916, which validates the performance improvement of
the proposed scheme. Finally, the schemes with data selection
(i.e., the proposed scheme, the half sample size scheme, and the
equal resource scheme) achieve higher learning accuracy than

those without data selection, demonstrating that importance-
aware data selection can indeed improve the learning accuracy.

To analyze the influence of wireless channel fading, we
finally illustrate the communication resource allocation for
each device in Fig. 10. We should note that the communication
resource allocation is mainly determined by the channel gain
according to (26b). As we have mentioned before, the channel
gain is mainly determined by the large-scale fading. Therefore,
device 1 is allocated with the least average communication
resource due to its shortest distance to the BS. Meanwhile,
since the channel gain is influenced by small-scale fading, the
resource allocation varies with time, as can be observed in the
figure.

VI. CONCLUSION

In this paper, we propose a joint data selection and re-
source allocation scheme based on the data importance in
the FEEL system to improve the learning efficiency. The
relation between the gradient norm and loss decay is first
analyzed, which suggests us to measure the data importance
by its gradient norm. Afterwards, we formulate a learning
efficiency maximization problem by jointly considering the
wireless resource allocation and data selection. For given
sample size and end-to-end latency, the optimal data selection
and communication resource allocation policy is derived in
closed-form. Based on this, the optimal end-to-end latency is
obtained by the Golden-section search algorithm. Furthermore,
by analyzing the relation between the learning efficiency and
the sample size, we observe that each device should sample
as many data as possible in the forward propagation step
for learning performance improvement. Finally, test results
verify the generalization ability of the proposed scheme and
show that our proposal can accelerate the training process and
improve the learning accuracy.

APPENDIX A
PROOF OF LEMMA 1

First, we can rewrite f,(B,,) as the pointwise minimum of
linear functions, as

f(Bn) = min {hn,l(Bn)v hn2(Bn), -, hmeL (Bn)} )
0< B, < B} 32
[ Bm ]
where hn,Bm (Bn) = On,[By] (Bn - LBmJ)+ Z On,m» 0 <
m=1

B, < BF. Note that [-] represents the ceil opera-
tion and [-| represents the floor operation. According to
[33], the pointwise minimum f,(B,) is concave since
hn1(Bp), hn2(Bp), - - ,hn}Bi(Bn) are all linear.

APPENDIX B
PROOF OF THEOREM 1

Since problem P2 is convex, we can utilize the Lagrangian
method to solve it and the partial Lagrange function is given
in (22). Then, based on the KKT conditions, we can obtain
the following necessary and sufficient conditions, as

OL  9f.(By) 1

oB: ~  oB; T




> 07 B* Bmin
=0, B™"<B<BF. Wnel, (33)
<0, B =8By,
oL 14 «] 20, 7,=0,
om PRI { =0, 0'<ry, TEN
(34
1w (TM’F—#B;tE—k —T) =0, Vn €N,
N
A <Z - 1) =0, \*, 1t >0. (36)
n=1
Note that we have fitted the loss decay function f,(B,,) as
shown in Fig. 3 and the subgradient of f,,(B,,) is
fa(Bn) [ =0n 8,1, if B, ¢ Z, 37)
0B, € |on,B,+1,0n,B,], otherwise,

where Z is the set of non-negative integers. With simple
mathematical calculation, we can derive three cases about the
optimal data selection strategy as follows

1) If gn(Bmin) < )\* B* = Bglin;
2) If g, (Bma) A\ and  Bmax =
T— TMF TD
min ( BY, —————— |, B} = Bmax;

tB
3) If g, (B2") > A and g, (B2™) < X%, B = ¢ (\),
where ¢, (x) is the inverse function of g, (B,,) in the
interval [BMin pmax],
According to the above three cases, we can derive the
optimal data selection strategy as shown in (26a). Furthermore,
the resource allocation policy achieves the optimum when

™F BB 4+ S+ TP =T, VneN. (38)
Tty
Therefore, 7% is given by
: 4 !
(e mmm) )

which ends the proof.

APPENDIX C
PROOF OF THEOREM 2

It is easy to prove that problem P2 is a concave-convex
fractional programming problem. Then, we can transform P2
into a convex problem via the Charnes-Cooper transformation
[34] by introducing the following auxiliary variables

1 B, n
= n = T n = 4 4
=70 4 7 T (40)
Now, the problem P2 can be rewritten as
a q
P3: min —2z (i) : (41a)
{an.n,2} (; I

V22
st 2TMF g+ +2TP° <1,¥ne N, (41b)

RU
N
> <z (41¢)
n=1

Bg‘i“z <qgn < Bflz, Vn € N,
GnyTn,2 > 0.

(41d)
(41e)

Given z (or T'), the optimal value obtained by optimizing g,
and z,, in P3 is exactly equal to F(T). Since problem P3 is

convex, F(T) is also convex with z, i.e., —. Therefore, we

can conclude that F(T) is a strictly unimodal function with
T when T is bigger than zero since E(T) > 0. This ends the
proof.

APPENDIX D
PROOF OF LEMMA 3

To prove this lemma, we consider the following two cases.
Case A: In this case, there is no data selected for backward
propagation and each device’s latency is given by

v

RU+TD Vn e N,

T, = TMF + (42)
where 7,, satisfies 22;1 T, < 1. Then, by optimizing 7,,, we

can obtain the minimal total latency as

Yy
Tmin = TM’F - + TD-
P2

Since T, is the minimal total latency when no data is
selected, it can be regarded as a lower bound of 7.

Case B: The maximal total latency would happen when all
data are selected to join the backward propagation. In this case,
the loss decay achieves its maximum. Then, to maximize the
learning efficiency, the total latency should be minimized by
optimizing 7,. By allocating equal communication resource to
all devices, we can obtain the total latency as

VN

Toax = TMF + max {Bitﬁ + RU} +7TP, (44)

which can be regarded as an upper bound of 7.

(43)

APPENDIX E
PROOF OF THEOREM 3

The expectation of learning efficiency can be expressed as

Z E {fn (Bn)}
E{E} _ neN -

We mark two different values of 7MF as TMFD and TMFE2)
that satisfy TMFD < TMF® and the corresponding sample
sizes are {Bfl’(l)} and {be’(z)}, respectively. According to
(13), we have

(45)

F,(2) F,(2) F,(1)
TMFQ@) — %TM,F,(I) —%TM,W e N. (46)
B, By
Let {BZ’(1 , Tn*’(l)} denote the optimal solution to problem P2

when TMF — TMEWD)  Then, when TMF = TMF(z) a feasi-
B EE® (RO
B0 gh®
B;“Lv(l)BfL»@)
0

ble solution to problem P2 is {

According to (29), the expectation of fn<



F,(2)
is equal to ﬁﬂi { fn (BZ’(D)} since the selected data’s

B

proportion is ﬁ for TMED and TMF?) | Since T (1) =

TMED 4 t‘fLBZ’?l) + ﬁ + TP, Vn € N according to

Theorem 1, we have the following equation

B;’(I)Bi’@) VBE@)

B£7(1) T;’(I)RUBS,(l)
(1) BEL’(Q) _ Bza(l)
R

7() + 7P

— TMEQ) | B

BH@

= 0 (T° +T™), Vn e N.

47)

Then, the corresponding objective value is given by

E { Z/\/ In (B:'Y;Fiﬁ?(z) ) }
ne e

I o {n (5]
T

RGO}

BE(® _pgh()
neN T+ — BL® (TD + TM)

e (5Y))
T ’

E? —

> D
neN

(48)

where E*() is the optimal value when TMF = TMED et
E*(2) denote the optimal value when TMF = TMF®_ Then
we have F(?) < E*(2), Combining this with (48), we can
conclude that £ > E*() when TMF® > TMED 1
conclusion, the expectation of learning efficiency increases
with TMF,

Furthermore, the limit of learning efficiency can be given
by

N TMPq C
tF n n
lim E{E*} = lim —_—
TMF 00 £’} TMF 00 7;1 el qntB + TMF
N
7nChn
=D LT (49)
n=1 1""n n
This ends the proof.
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