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Optimizing the Learning Performance in Mobile
Augmented Reality Systems with CNN

Yinghui He, Jinke Ren, Guanding Yu, and Yunlong Cai

Abstract—It is an essential goal for future wireless networks
to provide better artificial intelligent services. In this paper, we
investigate the joint communication and computation resource
optimization in the mobile edge learning system to support
augmented reality applications, where the convolutional neural
networks (CNNs) are deployed at the edge server. For such
a system, we first develop a delay model to characterize the
relation between the computation latency and the input image
size of general CNN models. Then, we formulate a mixed integer
nonlinear optimization problem to maximize the system compu-
tation capacity under the constraints of learning accuracy, end-
to-end latency, and energy consumption. To solve this problem,
we first investigate maximizing the system learning accuracy
under the communication and computation resource constraints.
The optimal resource allocation policy can be achieved by a
low-complexity search algorithm. We further prove that the
original problem is NP-hard and propose an efficient heuristic
algorithm with a newly-developed offloading priority function.
An upper bound for the proposed algorithm is also derived.
Finally, test results validate the applicability of the delay model
and demonstrate the performance improvement of the proposed
algorithm as compared with the existing algorithms.

Index Terms—Mobile augmented reality, edge learning, learn-
ing accuracy, resource allocation, computation capacity, offload-
ing priority.

I. INTRODUCTION

In the next generation networks, giga-bit data rate, milli-
second end-to-end latency, and wireless network intelligence
need to be achieved to meet the developing requirements of
mobile applications. To improve the data rate and reduce
the communication latency, some techniques, such as mas-
sive multiple-input multiple-output (MIMO), millimeter wave
(mmWave) communications, and small cells deployment have
been proposed [2]. On the other hand, artificial intelligence
(AI) has presented its powerful ability in solving intractable
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problems in many fields, such as data mining, natural language
processing, and computer vision (CV) because of its strong ca-
pability of learning and inference. Therefore, wireless network
intelligence can be achieved by the combination of wireless
networks and Al, which has been regarded as an important
research direction for future wireless networks [3].

Recently, wireless edge learning has been proposed by
deploying Al algorithms at the network edge, i.e., cellular base
stations (BSs) [4]. The study of wireless edge learning contains
two trends, i.e., 1) Al for communications, where Al is
considered as an effective tool to improve the performance of
wireless communication networks, such as channel estimation
[4], resource allocation [6], [7], and signal detection [8];
2) communications for Al, where wireless communication
networks are designed to improve the learning (training and
inference) performance of Al algorithms. For the training
performance, a number of techniques have been proposed
to improve the network intelligence, such as mobile edge
computing (MEC) [9]-[11] and federated learning (FL) [12]-
[15]. Specifically, FL is proposed as a novel Al training
framework where model training is distributed in user devices
and the training results are aggregated at the BS to ensure
the user’s privacy [12]. In [13], a FedAvg algorithm has been
proposed to achieve high-quality learning models within a
small number of communication rounds. The authors in [14]
have proposed a broadband analog aggregation scheme to
achieve the tradeoff between communication and learning in
the wireless FL system. Moreover, an efficient joint batchsize
selection and resource allocation policy has been developed
for the FL system to accelerate the Al training process [15].

In the wireless edge learning system, it is essential to
improve the quality of experience (QoE) of mobile users when
Al applications are used in wireless communication systems,
such as mobile augmented reality (MAR) applications and
autonomous vehicles. Therefore, in this work, we focus on
joint allocation of communication and computation resources
to support the MAR applications, which provides users with
immersive experience and has become one of the most popular
mobile applications [16], [17]. The main component of MAR
applications is the CV task, which is usually accomplished
by the convolutional neural networks (CNN) due to its high
learning accuracy. However, the processing latency and energy
consumption for CNN models are generally too large to be tol-
erated. In this work, we consider offloading the CV tasks to the
network edge server for processing. By this means, the end-
to-end latency and energy consumption can be greatly reduced
while the learning accuracy can be significantly improved
at the same time. On the other hand, the CNN architecture
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and the input image size greatly affect the performance of
the MAR applications since a deeper network can extract
more information from a larger image but results in higher
computational complexity.

To balance the learning accuracy and the computational
complexity, several methods have been developed in the edge
learning framework [18]-[23]. The authors in [18] have devel-
oped a software accelerator, namely DeepX, to divide large-
scale Al models into several parts for parallel processing.
This method has been further improved in [19] by exiting
the CNN computation at an approximate intermediate layer.
In [20], the authors have proposed a non-loss depth-wise
image partitioning scheme to reduce the overall processing
latency. Furthermore, the authors in [21] have characterized the
relation between the computational complexity and the image
size by curve fitting, and developed an efficient algorithm to
achieve the tradeoff between the learning accuracy and the
processing latency. This framework has been extended in [22]
to achieve a better learning accuracy via optimally allocating
the edge computation resource. Particularly, to balance the
learning accuracy and the processing latency, the authors
in [23] have developed an optimal selection policy between
local computing and edge offloading under the constraints of
bandwidth and energy consumption.

The aforementioned studies mainly focus on characterizing
the relation between the CNN computational complexity and
the image size by curve fitting and measurement. However,
no theoretical model has been developed therein. Therefore,
the results in these studies are not general and cannot be
utilized for optimization. Moreover, joint communication and
computation resource allocation has not been investigated,
which is also essential to improve the system learning per-
formance. Inspired by these issues, we consider the joint
optimization of CNN structure and resource allocation to
improve the performance of MAR applications in the mobile
edge learning system. We first analyze the characteristics of
general CNN models and develop a theoretical delay model
to characterize the relation between the computational latency
and the image size of general CNN models. Based on this, we
formulate a mathematical optimization problem to maximize
the system computation capacity, i.e., the number of supported
devices, under the requirements of end-to-end latency, energy
consumption, and learning accuracy. Our main result is that the
optimal image size should be adaptively controlled according
to the wireless condition for a better learning performance.

The main contributions of this work are summarized as
follows.

o We propose a delay model to characterize the relation
between the computational latency and the image size
for general CNN models, which is also validated via
test results. Based on this, we formulate a mixed in-
teger optimization problem to maximize the number of
supported devices under the end-to-end latency, energy
consumption, and learning accuracy requirements, which
is proved to be NP-hard.

o To solve the original problem, we first aim at maximizing
the system learning accuracy for the scenario where the
number of accessed devices is fixed. The optimal resource

allocation policy is derived in closed-form and a one-
dimensional search algorithm is developed to reduce the
computational complexity.
« Based on above results in the simple scenario, we define
a novel function to characterize the offloading priority of
each device depending on the data rate and the local com-
putation resource. Then, we develop an effective heuristic
algorithm to solve the original problem. A theoretical
upper bound for the proposed algorithm is derived and
some special cases where the heuristic algorithm can
achieve exactly the optimal one are also highlighted.
The rest of this paper is organized as follows. In Section
II, we introduce the system model, establish the CNN delay
model, and formulate the optimization problem. In Section III,
the optimal solution to maximize the system learning accuracy
for given the set of supported devices is developed. Section IV
proposes an effective heuristic algorithm to solve the original
problem. Test results are presented in Section V and the whole
paper is concluded in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will first introduce the multi-user MEC
system and establish the delay and energy consumption mod-
els. Based on this, we then formulate the optimization problem
to improve the system computation capacity, i.e., the number
of supported devices.

A. System Model

As shown in Fig. 1, we consider a multi-user MEC system
with one BS and N devices, denoted by the set N/ =
{1,2,---, N}. Each device needs to accomplish a CV task,
such as image classification or object detection, using classical
CNNs. Owing to the limited computation resource of devices,
the CNN is placed in the edge server located at the BS and
each device can offload the task data, i.e., local images, to the
edge server for data processing.

Resize
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Resize
A \
.

:
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Fig. 1. Multi-user MEC system model.

To reduce the communication overhead of data offloading,
each device should first compress the image resolution before
transmission. After receiving the compressed images from
all devices, the edge server will process them in parallel
by sharing its computation resource. Finally, the computing
results are sent back to each device. We should note that the
delay for downloading computation results can be reasonably
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neglected because of their small data sizes. Moreover, the
delay for local resizing should be considered since some
devices may not have a high computation ability, such as
Internet of things (IoT) devices. Therefore, the detailed process
of each task includes three phases, i.e., local resizing, image
transmitting, and edge processing.

B. Local Resizing

As mentioned above, each device shall compress the im-
age data before transmission. In this paper, we assume that
each device uses the bilinear interpolation method for image
resizing [24]. Let s, (in pixel) denote the width and height
of the n-th device’s image after local resizing. Then, the
resolution of the compressed image can be expressed as s2.
Correspondingly, the total data-size of the compressed image
is 05,21, where o is the data-size for each pixel.

For the bilinear interpolation method, the RGB value of
each new pixel is calculated based on those values of the
four neighbor pixels in the original image. Therefore, the
computational complexity of the bilinear interpolation method
is proportional to the resolution of the compressed image.
Consequently, the total computation cost (in CPU cycle) for
resizing the image can be expressed as C,s2, where C,
represents the required number of CPU cycles per pixel. Let
fn (in CPU cycle/s) denote the local CPU-cycle frequency
of device n with an upper bound f3'®*. Then, the energy
consumption in each CPU cycle is given by xf2, where & is
a coefficient determined by the corresponding device and the
original image [25]. Based on the above analysis, the latency
and energy consumption for local resizing can be respectively
expressed as

2
DL = C;S", VneN, 1)
Bt =kC,f2s2, ¥n € N. )

It is worth mentioning that although we adopt the bilinear
interpolation method for analysis, the delay and energy model
in above can be directly utilized for other methods, e.g.,
bicubic interpolation method. The computational complexity
of those other interpolation methods still keeps proportional
to the resolution of the compressed image.

C. Image Transmission

In this work, we adopt the time-division multiple access
(TDMA) method for channel access. Specifically, each time
frame is divided into N time-slots for data transmission. Let
t, denote the proportion of device n’s time-slot in one time
frame. Define B and Ny as the system bandwidth and the
channel noise power, respectively. Let h,, denote the channel
gain of device n, which is a random variable and varies with
time. Denote p,, as the transmit power of device n. Since
each time frame (10 ms in LTE standard) is much shorter
than the transmission time (about 100ms to 1s in test), the
transmission procedure will experience multiple time frames.

Therefore, according to [10], we can use the average data rate
to approximately evaluate the image transmission delay, as

hn 2 n
R, = BE, {10g2 (1 + |]le> } L VYneN, (3
0

where Ej {-} is the expectation over the channel gain h,,.
Based on this, the average image transmission delay of each
device can be expressed as

DT — 570

It should be noted that in one time frame, only ¢, pro-
portion time is allocated to device n for image transmission,
which consumes transmit energy. However, the other 1 — ¢,
proportion time is its waiting delay so that no energy is needed
during this period. Therefore, the energy consumption for each
device to transmit its image can be expressed as

, VneN. 4)

32

El = ];Lipn, Vn e N. )

D. Edge Processing

After receiving the images from all devices, the edge
server will start image processing with a pre-determined CNN.
Traditional CNNs require a fixed size of input image, which
cannot be guaranteed in this work since different devices may
have different image sizes. To address this issue, we use a
spatial pyramid pooling layer to replace the fully-connected
layer in classical CNN model [26]. By this means, the new
CNN model can process images without considering the image
size.

N —

Convolution kernel
(Kje,)

(I-1)-th output feature map
M%)

I-th output feature map
M xc)

Fig. 2. The I-th convolutional layer.

Now we begin to analyze the characteristics of the CNN
model. The most important part of the CNN is the convo-
lutional layer, which causes the main computation latency in
edge processing. Therefore, we mainly focus on analyzing the
convolutional layers, as shown in Fig. 2. Let L denote the
number of convolutional layers in the CNN model. According
to [27], the time complexity of the [-th convolutional layer can
be expressed as

TN = O (1o KEMP), 1=1,2,-- L, (6)

where ¢;_1 is the number of input channels, ¢; is the number
of output channels, K 12 is the size of convolution kernel, and
Mf is the size of output feature map. Note that L, ¢;_1, ¢y,
and K are all determined by the CNN architecture and M,
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depends on the input image size. Specifically, according to
[28], the relation between the output feature size M; and the
input image size s can be expressed as

My —K;+2d
-1 l Ly

17 l:2737"'aL7

M = X (7
s—K1+2d1+1’ =1,
1

where r; is the stride (step size) and d; is the padding size.
Based on this, we can conclude that the size of output feature
map in each convolutional layer is proportional to the input
image size, indicating that the computational complexity of
each convolutional layer is proportional to the input image
resize s2. Then, the total computational complexity of the
whole CNN is given by

TN = 0 (s?). (8)

In this paper, we assume that the edge server processes
images by CPUs!. Let F° (in CPU cycle/s) denote the overall
computation resource of the edge server, which will be allo-
cated to all devices for parallel computing. Denote f; as the
computation resource allocated to device n, which satisfies
> nen fr < F©. Then, the edge processing delay of device n
can be expressed as

e Ot
B
where C° is the computation cost of the CNN per pixel.

Based on the above analysis, the end-to-end latency and
energy consumption of each device can be expressed as

D,=D-+ DI+ D¢, VneN,
E,=FE-+E' VneN,

, YneWN, €))

(10)
Y

respectively.

E. Learning Accuracy

In general MAR applications, the learning accuracy is one of
the most important issues that affect the QoE of mobile users.
According to [21], the learning accuracy generally increases
with the input image size when the image size is below a
threshold. To validate this result, we adopt the SPP-net for
image classification, which is constituted by replacing the last
pooling layer in 34-layer ResNet [29] with a spatial pyramid
pooling layer. The model is trained on Caltech101 dataset
[31] with 101 categories and the experimental result is shown
in Fig. 3. We shall note that the original image size in the
dataset is roughly 300 x 200 pixels and resizing the original
image to larger size would not improve the learning accuracy
performance. From Fig. 3, we can observe that the learning
accuracy first increases when input image size is smaller than
2002 pixels. However, it keeps almost unchanged when the
image size is larger than 2002 pixels.

Based on the above discussions, we can define a monotone
non-decreasing function ¢(-) to describe the relation between

INote that our work can be also extended to the GPU scenario since GPU
has a similar delay and energy consumption model with CPU [15], [22], [23].
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Fig. 3. Learning accuracy vs. input image size.

the learning accuracy and the input image size. Specifically,
the learning accuracy of device n can be expressed as ¢(s2).

F. Problem Formulation

In this paper, we aim at maximizing the computation capac-
ity of the whole system. Because of the limited communication
and computation resources, not all devices can finish the
tasks within the time limit. Therefore, we define the system
computation capacity as the number of supported devices
whose tasks can be finished within the required time limit
T. Let ,, denote whether device n can finish its task on time,
where m,, = 1 if device n succeeds and m,, = 0 if device
n fails. Therefore, the objective function can be defined as
25:1 Ty, and the mathematical optimization problem can be
formulated as

N
Pl: max an, (12a)
Snyfnstn, —
{ ffwﬂ'" } n=1
s.t. P(s2) > mpa, Vn €N, (12b)

T (D + DY + D) < T, Vn e N, (12c)

T (Ey + E}Y) < E,, Vn €N, (124d)
N
D Tt <1, (12€)
n=1
N
> mafy < F (12f)
n=1
0< fo < ™, VneN, (12¢)

t’rL)STL?f::L 2 077T7L e {0) 1}7 vn 6 Na (12h)

where T', i, and E,, denote the maximum latency requirement,
the learning accuracy requirement, and the energy consump-
tion limitation of device n, respectively. (12b) represents the
learning accuracy requirement of each task, (12c) guarantees
the delay tolerance of each task, (12d) bounds the maximal
energy consumption of each device, (12e) is the total com-
munication resource limitation, and (12f) limits the overall
computation resource of the edge server.

The optimization variables in P1 include image size (s,),
local CPU-cycle frequency (f,), time-slot proportion (%),
edge computation resource allocation (fS), and completion
indicator (m,). Note that f, cannot always be f'®* since
higher frequency will cost more energy and the total energy
consumption should not exceed its limitation.
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It can be easily proved that P1 is a mixed integer non-
linear problem and is hard to solve in general. To make it
more tractable, we first consider a simple scenario where the
set of supported devices is given (denoted by Z) and then
determine whether the achievable learning accuracy can meet
the corresponding accuracy requirement «. In this way, we
can derive the relation between the system learning accuracy
and the set of supported devices. Accordingly, the optimization
problem associated with the simple scenario can be formulated
to maximize the minimum accuracy among all device in Z,
shown as

P2

max
{S7l1f717}
tn, fr,

st. DN+ D'+ D¢ <T VneZ, (13b)

min {¢ }

nel (132)

E-+E'<E,, VneT, (13¢)
Ztn <1, (13d)
nezl

s (13¢)
nezl

0< fo < fM VYnelT, (13f)
tns Sn, fr >0, Vn € I. (13g)

Then, if the optimal value of the objective function (13a) is
larger than «, the solution to P2 is also a feasible solution to
P1.

We shall note that the solution of P2 is not the same as the
solution of P1. However, after P2 is solved, we can compare
its optimal learning accuracy with the minimum requirement
in P1. In this way, we can develop an effective algorithm to
solve P1, as elaborated in the following sections.

III. MAXIMIZING LEARNING ACCURACY

In this section, we first transform P2 into a classical convex
optimization problem and then derive the optimal solution in
a closed-form way.

A. Optimal Solution to P2

Recall that ¢(-) is a monotone non-decreasing function
and P2 aims at maximizing the minimum learning accuracy
among all devices in Z. Therefore, the optimal solution is the
same if we maximize milzl{s%} instead of miIIl{gb (s2)}. Let

ne ne
S = ma%({s; 2}. Then, maximizing IniIII{S%} is the same as
n ne
minimizing S, which facilitates us to obtain the general results

for CNN models. Thus, P2 is equivalent to the following
problem

P3:  min S, (142)
{5n7fn:s7}

tnaff;
C o ce 9

s.t. =+ +— < , Vn €T, (14b)
In 15
anf2+R— < E,s;%, VneTI, (l4c)

n

5.2<8, Vnel, (144d)

(13d)~(13g).

Since only (14b)—(14d) contain the variable s,,, we can com-
bine these constraints without affecting the optimality of the
solution, as

C, o ce
+ 4+ —<TS, VneT,
fa 15

/iCnf,% ”p" < E,S, VneT.

n

(15)

(16)

Therefore, P2 can be reformulated into the following problem
P4 min S, )
{8, frstn, f5}
S.t. (15), (16), (13d)—(13g).

We can determine whether the achievable learning accuracy
of Z can meet the corresponding accuracy requirement o by
comparing the optimal value to P4 with S, that satisfies
1) (S; 1) = a. It can be easily verified that the objective
function and all constraints in P4 are convex, therefore it
is a classical convex optimization problem. We can utilize
some convex optimization tools to solve the problem. In the
following, we will analyze the problem to gain some insightful
results.

Based on the above analysis, we can obtain the optimal
solution to P4 using the method of Lagrange multiplier. The
partial Lagrangian function can be defined as

L=5+) A ( ?e TS)—i—u(Zt —1)

nel ne’l
+an (/{C’ f2+7—E S> +v (Z ffL_Fe) ,
nel nel

(18)

where A\, wy, 1, and v are the Lagrange multipliers associated
with the constraints (15), (16), (13d), and (13e), respectively.
Let {S*, f*,t*, f&*} denote the optimal solution to P4. To
better characterize the structure of the optimal solution, we
first define an auxiliary local resource function, as

EES}Ll_'Upn
W(8) = =,

which is obtained according to (16) and represents the required
local computation resource of each device when the image size
of this device is S~1. Then, based on the Karush-Kuhn-Tucker
(KKT) conditions, we can derive the optimal solution to P4 in
closed-form expressions, as shown in the following theorem.
Theorem 1: The optimal solution to P4 is given by

19)

fr=min {7, fn(S)}, VkeZ, (20a)
o/Ry, + C¢/\/O*R,
ty = Vk eI, 20b
\V/0*/Rpo + C®
€,* n
= Vk eI, 20
Cﬁu* )
where 6* = —. Moreover, S* and 6* satisfy the commu-
o
nication and computation resource limitations ) ¢ =1 and
nel
S fy = Fe.
nel
Proof: Please refer to Appendix A. [ ]
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Remark 1: From Theorem 1, we can see that the optimal
local CPU-cycle frequency is determined by the energy lim-
itation and the corresponding upper limit, i.e., f**. When
the device’s energy is inadequate, the optimal local CPU-
cycle frequency will increase with the energy limitation.
However, when the local CPU frequency meets its upper
limit, it keeps unchanged. Besides, the optimal communication
and computation resource allocation policy is determined by
the communication data rate, the local CPU-cycle frequency,
and the required CPU cycles per pixel for local resizing to-
gether. When the wireless channel of a device becomes better,
less communication resource and edge computation resource
should be allocated to this device. This result is reasonable
because it can ensure the fairness among all devices. Moreover,
if the device costs more time in local resizing, more resources
should be allocated to this device.

Until now, we have derived the optimal solution for P2.
Then, we have the following theorem to show the relation of
the optimal image sizes among different devices.

Theorem 2: The optimal image sizes of all devices are the
same, i.c., (st)Z =S"1 vnel

Proof: According to the proof in Appendix AN, Ve
o C
St — =
fn o GiBa o fy
TS*, Vn € Z. Meanwhile, we have (s*) <S* Vnel

C B n
* *J + 7 < T(sp) . ¥n € ZT. Therefore,
f an fn’

(s5)° =571, Vnel [ |

Remark 2: P2 aims at maximizing the minimum accuracy
among all devices in Z, which can be regarded as a classical
fair resource allocation problem in wireless communication
systems. From the results in Theorem 2, we can conclude that
the fairness can be guaranteed when all devices achieve the
same learning accuracy.

T are larger than zero, which means that

and

B. The Low-Complexity Algorithm

We now determine the optimal values of the two parameters
S* and 6* in Theorem 1. Classical solution is to perform the
time-consuming two-dimensional search algorithm. To reduce
the computational complexity, we now develop an efficient
algorithm to derive the optimal solution to P2.

By analyzing the results in Theorem 1, we can reduce the
number of variables by expressing 6* as a function of S*, as
presented in Theorem 3.

Theorem 3: The optimal 6* can be expressed as a function of
S*, ie., 0* = g2(S*). Moreover, S* satisfies hz(S*)gz(S*) =
1, where hz(S) and gz(S) are two monotone increasing
functions, as

hz(S) =
VR ) o/Rn
2n
9z(9) =

_1 i e
>) (F 275" cn/fn<5>> |

(22)

J/W

Proof: Please refer to Appendix B. [ ]

We shall note that hz(S) is obtained from the communica-
tion resource constraint (13d) and gz(.S) is derived from the
computation resource constraint (13e). They can be interpreted
as the usage functions, which represent the usage of commu-
nication and computation resource, respectively. Both hz(.S)
and gz(S) decrease with the image size, 1/S, which means
that the resource utilization rate increases with 1/S. When
hz(S*)gz(S*) > 1, the communication and edge computation
resources are not fully utilized. When hz(S5*)gz(S*) < 1, the
constraints of communication and edge computation resources
cannot be satisfied. Only when hz(S*)gz(S*) = 1, all re-
sources have been allocated to each device based on Theorem
1.

Based on Theorem 3, the method of two-dimensional search
over S* and 6* can be transformed into the one-dimensional
search over S*. Specifically, the range of S* is given in the
following lemma.

Lemma 1: The optimal S* should satisfy Sy, < S* <
Smax, Where

OPn
= max ,
nel EnR

KO max 2 o
Shax = Max {max { n (™) + L
nezl

Smin (23)

En R,.E,’

Cy ol ceI
fmaxT + R, T + FCT}} » @9
where I is the size of the set 7.

Proof: Please refer to Appendix C. [ ]
Combining Theorem 3 with Lemma 1, we now develop a
low-complexity algorithm to find the optimal solution to P2,
as shown in Table 1. Note that in each iteration, the computa-
tional complexity for calculating hz(S)gz(S) is O(N). There-
fore, the total computational complexity can be expressed as

O (Nlog(1/e)), where € is the maximum tolerance.

TABLE 1
ONE-DIMENSIONAL SEARCHING ALGORITHM FOR P2.

Algorithm 1 One-dimensional searching algorithm for P2.
1 Set the maximal error tolerance e.

2 Set Sy = Smin, Su = Smax, let S = (S¢+S,) /2.
3 While |hz(S)gz(S) — 1| > e do

4 if hI(S)gI(S) > 1, then

5 Sy, = S.

6 else

7 Sy = 5.

8 S =(S¢+Su.) /2.

9 End while

10 Output the optimal value ¢ (S ’1).

IV. MAXIMIZING SUPPORTED DEVICE’S NUMBER

In this section, we will first prove that P1 is NP-hard and
then develop an efficient heuristic algorithm to solve it. A
theoretical upper bound is also developed to guarantee the
performance of the proposed algorithm.
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A. The Heuristic Algorithm

In P1, the communication and computation resources
should be jointly allocated to all devices. Therefore, P1 is
similar to the two-dimensional Knapsack problem that is
generally NP-hard. Thus, we can give the following theorem.

Theorem 4: P1 is an NP-hard problem.

Proof: Please refer to Appendix D. ]

According to Theorem 4, it is hard to find the optimal
solution to P1 with polynomial complexity. With this regard,
we now start to develop a heuristic algorithm to find a
suboptimal one. For ease of presentation, we first define the
offloading priority function for each device, as

TSo — Cn/fn(Sa)
o/R, + C¢/F¢

which represents the maximal image size that each device can
achieve if all communication and computation resources could
be allocated to it. Recall that the learning accuracy is positively
related to the image size according to Fig. 3. Therefore, those
devices with higher P,, can utilize the resource more efficient
and improve the learning accuracy more quickly as compared
with those devices with lower P,,.

Based on the offloading priority function, we can first
rearrange all devices in non-increasing order, i.e. PT(l) >
PT(Q) > e 2 PT(N)? where 7 = {7(1),7(2), - ,7(N)}
is a permutation on {1,2,..., N}. Then, we can sequentially
add one device into the set 7 and check whether it is
feasible to P1 by comparing the optimal value to P2 with
the accuracy requirement. By applying the exhaustive search
over the number of supported devices from 1 to N, we can
find a solution to P1 and then obtain the optimal resource
allocation strategy according to Algorithm 1. In addition, we
can easily check whether the set Z in P2 is also feasible for
P1, as shown in the following lemma.

Lemma 2: The optimal learning accuracy of P2 can meet
the requirement o when hz(S4)gz(Sa) > 1.

Proof: Due to the fact that h(S) and g(S) are both
monotone increasing functions, we have S, > S* only
when hz(Sa)gz(Sa) > hz(S*)gz(S*) = 1. Further, the
function ¢(-) decreases with S so that we have ¢ ((S*)7!) >
P(S51) = . L

Based on the above analysis, the detailed procedures of the
heuristic algorithm are presented in Table II. Similar to the
analysis of Algorithm 1, the computational complexity of each
iteration is O (log(1/€)) where € is the maximum tolerance
and the maximal iterative number is N. Besides, the computa-
tional complexity of sorting algorithm is O (/N log N). There-
fore, the total computational complexity can be expressed as
O (Nlog N 4+ Nlog(1/e)).

Pn: 5 V'I’LEN, (25)

B. Performance Analysis and Discussions

We shall note that Algorithm 2 cannot always achieve the
optimal solution to P1 since the offloading priority function
does not jointly consider the communication and computation
resources. Take a three-device system as an example, where
the offloading priority is P, > P> > P;. Moreover, we
assume that device 1 and device 2 have higher data rates

TABLE II
THE HEURISTIC ALGORITHM TO P1.

Algorithm 2 The heuristic algorithm to P1.

1 Calculate the offloading priority function P,, according to
(29).

2 Rearrange all devices in a non-increasing order according
to their offloading priority and construct 7.

3 Set the number of supported devices I = N + 1.

4 Do

5 I=1-1.

6 Z=A{r(1),7(2),--- ,7(I)}.

7 Until hI(Sa)gI(Sa) Z 1.

8 Obtain the optimal resource allocation strategy according to
Algorithm 1.

and need more computation resources to achieve the learning
accuracy requirement while device 3 has lower data rate and
requires more communication resources to achieve the learning
accuracy requirement. Then according to Algorithm 2, only
device 1 can be supported since the overall computation
resource may not meet the requirements of both device 1
and device 2. However, it can support device 1 and device 3
simultaneously since they require different kinds of resources.

Therefore, in this section, we first develop an upper bound
for the resource allocation problem P1. Then, based on this,
we further discuss some special scenarios where the proposed
heuristic algorithm achieves exactly the optimal one. First,
the constraints of P1 can be transformed into the following
constraint according to the proof of Theorem 4, as

1= mP + ) Y mumiGny >0, (26)
neN neN ieN
where
Gni 2
2
C¢o (1/\/R, — 1/V/R;
o (1/ [VR:) nieN. 27)

2F¢ (TSo—Cy/ [n(Sa)) (T'Sa—Ci/ fi(Sa))’

G, can be interpreted as the gain brought from device n
and device ¢. In other words, adding those pairs of devices
with larger G, ; will consume less resource and increase the
number of supported devices to the maximum extent.

To calculate the detailed expression of the upper bound,
we denote p as the non-ascending order of G, ;,i €
{1,2,---,n—1}hn € N, ie., Gp(l) > Gp(g) > e 2>
Gp(N(N-1)/2)- Moreover, let " and I°"T denote the ob-
jective value obtained from Algorithm 2 and the optimal
algorithm, respectively. Then the corresponding upper bound
of optimal solution can be presented in the following theorem.

Theorem 5: The upper bound of I°FT, denoted by IV,

should satisfy the following constraint

I I(1-1)/2
-1
1= P+ > Gy 20 (28)
n=1 n=1
Proof: Please refer to Appendix E. [ ]
From Theorem 5, we can find that the gap between VB

and TMA is caused by G, i, which means ignoring G, ; is the
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reason why the heuristic algorithm cannot achieve the optimal
solution. Therefore, when G, ; is equal to zero, the heuristic
algorithm is optimal. Then, we have the following three cases
where the results are exactly the optimal ones.

Case 1 (Adequate computation resource): In this case, the
edge computation resource is infinite, i.e., F'* — co. Then we
can see that Gy, ; approaches zero. Therefore, the proposed
Algorithm 2 can achieve the optimal solution since only
communication resource should be allocated and the offloading
priority can completely reflect the communication resource
requirement for all devices.

Case 2 (Adequate communication resource): Similar to case
1, when the communication resource is infinite, only compu-
tation resource needs to be allocated. Therefore, the offloading
priority function completely reflects the computation resource
requirement for all devices so that the obtained result is the
optimal one.

Case 3 (Identical data rate): In this case, the data rates of
all devices are identical. Thus, G, ; equals zero according to
(27). Therefore, the exclusive difference between all devices
is their local computing resource, which has been completely
considered in the offloading priority function. Therefore, the
corresponding result is the optimal one.

V. TEST RESULTS

In this section, we conduct experiments to validate the pro-
posed model and demonstrate the performance improvement
of our algorithm.

A. Methodology

For the local resizing and image transmission, we adopt
numerical simulations and the parameters are provided as
follows unless otherwise specified. The BS has a coverage
of 300 m and there are 10 devices randomly distributed in
the area. The system bandwidth is 5 MHz unless otherwise
stated and the noise spectral density is —174 dBm/Hz ac-
cording to the long term evolution (LTE) standards [30]. The
channel gains of cellular links are all generated according
to independent and identically distributed (i.i.d.) Rayleigh
random variables with unit variances. All devices have the
same transmit power, i.e., p, = 24 dBm, Vn € N. The delay
requirement is 0.4 s for all tasks and the maximum energy
consumption is 0.2 J for all devices. The accuracy requirement
is set to be 0.80 for all devices. We assume that the CPU
frequency of each device, i.e., f;,, is uniformly generated from
1 to 2 GHz. The training dataset is Caltech101 [31]. All
images are converted to BMP format before simulation and
the data size per pixel is 24 bits/pixel. The required number
of CPU cycles per pixel follows the uniform distribution within
C,, € [1000,2000] CPU cycles/pixel. The coefficient & is set
to be 10728 according to [25].

For the edge processing, we conduct experiments to show
the learning accuracy performance. As mentioned earlier,
we adopt SPP-net constituted by the 34-layer ResNet and
a spatial pyramid pooling layer for image classification. It
is also trained on Caltech101. The SPP-net is implemented
on the Linux server with Intel(R) Core(TM) i7-8700K CPU.

To achieve the parallel processing and perform the proposed
resource allocation policy, we utilize the tool cpulimit to limit
the CPU usage of a process (expressed in percentage) [32].
The computation resource allocated to each device can be
controlled with this tool and each device can run its own task
with the allocated resource in parallel. Note that the maximal
computation resource of the CPU is 1200% since the CPU
has 12 cores. Here, we assume that the computation resource
of the edge cloud is 300%. Prior to running the simulations,
we measure the actual delay when the computation resource
and the image size are both fixed. Then, we can obtain that
the computation cost for the SPP-net is 0.0004143 s/pixel
by fitting. The detailed procedures of the simulation and
experiment are presented in Fig. 4.

Simulation . . Implement edge .
- | Find optimal * et e . e Comparison
Parameters OPmaAt | (s’ <" DS} processing on D, P
solution with X and
the server with . .
Matlab. verification.
Python.
e
D; |

Fig. 4. The detailed procedures of the simulation and experiment.

In our test, we first run the proposed Algorithm 2 in Matlab
to find the solution. Then, the solution is used for test of edge
processing. Finally, we compare the experimental results with
the simulation results to demonstrate the effectiveness of the
proposed delay model. Note that the delay of edge processing
is experimental result while the delays of local resizing and
image transmitting are simulation results. Through our test, the
delay of edge processing contributes almost 80% to the total
delay while the delays of local resizing and image transmitting
contribute about 8% and 12%, respectively.

B. Model Verification

0.7 . . 3002
—A—OPT (delay)
0.6 | Theoretical (delay)
-A-OPT (size) 950?
0.5} /
/_,/_-G/ o
%0_4 [ / B
%03‘/2' I %
a BUNEEE E
02 a--- 7T
L---- {1502
0.1
0 ‘ ‘ ‘ ‘ 1002
0.30 0.34 0.38 0.42 0.46 0.50

Delay requirement (s)

Fig. 5. The delay and optimal image size vs. the delay requirement. The
curve, OPT (delay), is the experimental delay of the optimal solution to P2.
The curve, theoretical (delay), is the theoretical delay of the optimal solution
to P2. The curve, OPT (size), is the optimal image size to P2.

Fig. 5 shows the actual delay and the optimal image size
by running the proposed Algorithm 1 with different delay
requirements. As mentioned earlier, only the delay of edge
processing is obtained from experiment, which contributes
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almost 80% to the total delay. It can be seen that the optimal
image size will increase with the increasing delay requirement
since larger image size can be used for better accuracy.
Moreover, the test delay almost equals the theoretical delay,
which proves the accuracy of our model for edge processing.

C. Simulation Results of P2

In this part, we will show the performance improvement of
the proposed Algorithm 1 as compared with the baseline equal
resource allocation scheme. For brevity, we abbreviate our
proposed algorithm as OPT and the equal resource allocation
scheme as EQU.

- A-OPT,B=5MHz
- % -EQU,B=5MHz |]
—A—OPT,B=10MHz

—+—EQU,B=10MHz

Accuracy
o
~
(4]

o
3
}

0.65

0.6 : : : : :
6 7 8 9 10 11 12 13

The number of devices

Fig. 6. The learning accuracy vs. the number of devices.

0.9 T

0.851

o
®
:

Accuracy
o
~
(6]

e
S

-4 -OPT,B=5MHz
’ -# -EQU,B=5MHz

—A—OPT,B=10MHz
—+—EQU,B=10MHz

0.6 ' ' :
200 280 360 440 520 600 680

The computation resource of edge cloud (%)

760

Fig. 7. The learning accuracy vs. the edge computation resource.

Fig. 6 depicts the learning accuracy versus the number of
devices. It can be seen that the learning accuracy decreases
with the number of devices. This is because that few commu-
nication and computation resources can be allocated to each
device as the number of devices increases. Besides, compared
with the equal resource allocation policy, our algorithm can
achieve a significant performance improvement. Moreover, the
learning accuracy also increases with the system bandwidth
since more information can be transmitted to the edge server
with more communication resources.

Fig. 7 shows the learning accuracy versus the edge com-
putation resource. From the figure, we can find that the

learning accuracy of both the proposed algorithm and the equal
resource allocation policy increases with the edge computation
resource. It is intuitive that the edge server can process
images with higher resolution when its computation capacity
increases. Particularly, the learning accuracy of the proposed
scheme keeps invariant when the edge computation resource
becomes large enough. The reason is that when the edge
computation resource is large enough, the input image size
of CNN is bigger than 200 pixels but the learning accuracy
will not increase according to Fig. 3.

D. Simulation Results of P1

In this section, we will show the effectiveness of the
proposed Algorithm 2 (denoted by HA) as compared with the
optimal solution (denoted by OPT) obtained from exhaustive
searching. Moreover, the upper bound VB (denoted by UB) is
also used to show the performance gap between the proposed
algorithm and the optimal one.

The number of supported devices

o ||~@-OPT ]
-+ -HA
—A—-UB

0 I | | | | |

0.8 081 082 0.83 084 085 086 0.87

The accuracy requirement

Fig. 8. The number of supported devices vs. the accuracy requirement.
10 ; ; ;
@ OPT
-+ -HA

The number of supported devices

03 033 036 039 042 045 048 0.51
Delay requirement (s)

Fig. 9. The number of supported devices vs. the delay requirement.

Fig. 8 depicts the relation between the number of supported
devices and the learning accuracy requirement. From this
figure, we can see that our proposed algorithm can always
achieve almost the same performance with the optimal one,
which demonstrates the effectiveness of the proposed algo-
rithm. Moreover, the number of supported devices decreases
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with the accuracy requirement. It is because that each sup-
ported device will occupy more resources with higher accuracy
requirement. In particular, when the accuracy requirement
is larger than 0.86, the number of supported devices drops
evidently. The reason can be explained as follows. According
to Fig. 3, the accuracy cannot be higher than 0.87 due to
the limitation of the original image size under the given
CNN model. Therefore, given learning accuracy above 0.86,
it will consume much more resources to improve the learning
accuracy such that fewer devices can finish their task on time.

Fig. 9 shows the number of supported devices versus the
delay requirement. It can be seen that the number of supported
devices increases with the delay requirement since loose
delay requirement means less communication and computa-
tion resource are required for each device. Once again, the
proposed heuristic algorithm can still achieve almost the same
performance with the optimal one, which demonstrates the
applicability of our proposal.

12 T
@ OPT
[|-+ -HA
10 —A—UB

The number of supported devices

O L L L L L L
200 280 360 440 520 600 680 760
The computation resource of edge cloud (%)

Fig. 10. The number of supported devices vs. the computation resource of
edge cloud.

Fig. 10 depicts the number of supported devices versus
the computation resource of the edge server. We can ob-
serve that the number of supported devices increases with
the edge computation resource. Specifically, when the edge
computation resource is large enough (more than 680% in our
test), the supported number of devices keeps almost invariant.
Moreover, the gap between the upper bound and the optimal
solution becomes smaller when the edge computation resource
increases.

VI. CONCLUSION

In this paper, we aim at maximizing the number of sup-
ported devices in a multi-user MEC system where each
device uploads image to the edge cloud for recognition. A
novel delay model for general CNNs is first developed to
characterize the relation between the computation latency and
the input image size. Thereafter, an NP-hard optimization
problem is formulated to maximize the number of supported
devices under the learning accuracy, end-to-end latency, and
energy consumption constraints. To solve this problem, we first
analyze a special case where the supported devices are given
and turn to maximize the system learning accuracy. The joint
optimal communication and computation resource allocation

policy is developed in closed-form. Based on this, an efficient
heuristic algorithm is proposed to solve the original problem
by developing an offloading priority function for each device.
Moreover, based on a theoretical upper bound for the optimal
solution to original problem, we analyze three cases where the
heuristic algorithm can achieve the optimal one. Numerical
simulation and experimental results are finally conducted to
demonstrate the effectiveness of the theoretical delay model
and the performance improvement of the proposed algorithms.

APPENDIX A
PROOF OF THEOREM 1

According to the KKT conditions, we can derive the fol-
lowing necessary and sufficient conditions, as

oL . .
agr = 1= T A= Wik, =0, (29)
nel nerl
>0, fr=0
oL c, =9 Ja =0,
e = Ay 2wnCafi 8 =0, 0< fr < fme,
fa (f) <0, fi=fre,
(30)
8[/ * a * Z 07 t:L = 07
o = Myrm T { =0, >0, @b
aL _ * Cﬁ * 2 07 iﬁ :(l
o - { =0, for >0, G2
C o ce
P i N TS*) -0 (33)
( " t Ry f{
w? (wn (f)% + ;ﬁ - En5*> —0, (34)
w* (Z tr— 1) =0, o* (Z fer —Fe> =0, (35)
nezl nezl
Ny wh, 0" > 0, (36)

It can be easily verified that f, ¢, and f>* are all positive
according to (15) and (16). Therefore, according to (29), there
exists at least one device whose A\’ and w* are also positive.
We can discuss the following two cases.

Case 1: If there exists a device whose A} > 0, then u*,
v*, and A}, Vn € 7 must be larger than zero according to (31)
and (32). Besides, we can derive that fo* = /0*R,t,,, where

Ce *
0* = 7/“: On the other hand, if w,, > 0, f;* can be derived
ov
lEnsw]%n'_ n . .
as || =2 Stn — Pn according to (34). Otherwise, f,' equals

kCL,R,
fmax Therefore, we have

E,S* —

kChL R,
= min {f;", fn(57)}. (37)
Meanwhile, since p*,v*, Ay, > 0,Vn € Z, we have
?n + t;Rn + % —TS* =0, (38)
Zt;q:o, Zfﬁj*fFe:O. (39)
ne’l ne’l
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Combining (37), (38) with f>* = +/0*R,t,, the optimal
solution to P2 can be expressed as

o o/Rn, + C¢/\/O*R,

. VO /Rpo+C*®
gor = Yo Fno + O (41)
TS* —C/fx

Case 2: If there exists a device whose w;, > 0, then A}
must be larger than zero according to (30). With the similar
derivation, we can obtain the same results as those in case 1.

APPENDIX B
PROOF OF THEOREM 3

According to Theorem 1, S* and 6* should satisfy
Z O'/Rn +Ce/\/9*Rn o

neZ Ts 7Cﬂ/fn(5*) =5 42
\/0*/Rpo + C*® e 43)

;TS* —Cu/falS")

1
which can be rewritten as —— = hz(5*) and V0* = S*).
\/97 I( ) QI( )

Therefore, we only need to search S* until hz(S*)gz(S*) =
1.

Since f,(S) increases with S, T'S — C,,/fn(S) also in-
creases with S. Then, it is easy to find that both hz(S) and
gz(S) are monotone increasing functions.

APPENDIX C
PROOF OF LEMMA 1

We can obtain the range of S* by analyzing the following
two cases.
Case 1: From (16), we can observe that F,,S* is larger

than op,, /R, i.e., S* > max _IPn_ . This gives the lower

neZ | B, R,
bound of S*.

Case 2: Consider a special case where each device is allo-
cated with the same communication and computation resource,
ie., f¢ = F°/I,t, = 1/I, and the CPU frequency of each
device is set to be f, = f**. In this case, the objective
function can be derived as (24). Since we aim at minimizing
S in P4, Smax can be regraded as an upper bound of S*.

Combining the above two cases, we can obtain the range of
S* in Lemma 1.

APPENDIX D
PROOF OF THEOREM 4

We can rewrite P1 into the following problem

N

P5: max Y m, (44a)
" n=1

st. m(m,ma, -, TN) > a, (44b)

€ {0,1}, n € N, (44c¢)

where a = 1 and m(my, o, -+ ,7N) is given by

m(7r1371—27"' 77TN) =

7 C® /R, Tno /Ry,
1—
<";/ TSa - Cn/fn(Sa) nez./\/' TSoc - n/fn(Soc)
o /Ry - e 7 C®
NTSa*Cn/fn(Sa) neN TSa*Cn/fn(Sa)

(45)

Then, the constraint (44b) is quadratic. With simple mathe-
matical calculations, we can observe that P5 can be reduced
into the following mixed integer quadratic program, as

P6: max m(mwy, 7o, ,TN), (46a)
N

s.t. Z o =1, (46b)
n=1

7 € {0,1}, n e N, (46¢)

which is an NP-hard problem according to [33]. If P5 can be
solved, we can use the one-dimensional binary search over a
until the optimal value of P5 equals I. Then the corresponding
a is also the optimal solution to P6. However, since P6 is NP-
hard, we cannot solve it in polynomial complexity. Therefore,
P5 is also an NP-hard problem.

APPENDIX E
PROOF OF THEOREM 5

According to Appendix D, P1 is equivalent to P5 so that we
can analyze the performance gap based on P5. The constraint
(44b) can be rewritten as (26). From it, we can find that
G, is not included in the offloading priority function so
that the proposed solution is not optimal. However, we can
find an upper bound for the optimal solution 7°FT as follows.
First, assume that G, ; is the largest one among all supported
devices. Then, the upper bound, denote by IVB should satisfy

I I(I-1)/2
L= Pyt D Gotmy 20, (47)
n=1 n=1
which ends the proof.
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